MODBUS™
Communications
Driver DLL

User’s Manual

Version 2.210 --- June 6, 1998

Copyright © 1988 - 2000, Automation Consulting Services, Inc. All rightsreserved.

Subject to change without notice.

SOFTWARE LICENSE AGREEMENT

IMPORTANT! The enclosed materials are provided to you on the express condition that you agree to
this Software License. By opening the diskette envelope or using any of the enclosed diskette(s) you
agree to the following provisions. If you do not agree with these license provisions, return these
materials to Automation Consulting Services, Inc., in origina packaging with seals unbroken, within 3
days from receipt, for arefund.

1.

This software and the diskette on which it is contained (the “Licensed Software”), isli-
censed to you, the end user, for your own internal use. You do not obtain title to the
Licensed Software or any copyrights or proprietary rights in the Licensed Software.
You may not transfer, sub-license, rent, lease, convey, copy, modify, trandate, convert
to another programming language, decompile, or disassemble the Licensed Software for
any purpose.

The Licensed Software is provided “as-is’. All warranties and representations of any
kind with regard to the Licensed Software are hereby disclaimed, including the implied
warranties of merchantability and fitness for a particular purpose. Under no
circumstances will the Manufacturer or Developer of the Licensed Software be liable
for any consequential, incidental, special, or exemplary damages even if apprised of the
likelihood of such damages occurring. Some states do not alow the limitation or
exclusion of liability for incidental or consequential damages, so the above limitation or
exclusion may not apply to you.

I ncor porated (OEM) Driver Amendment

If you own the ACS moDBuUS driver (Incorporated Version), this license is amended to
provide for the free or for-profit distribution of software incorporating MODBUS Driver
code as follows: you may distribute executable programs using the complete and
unaltered ACS mobBuUs Driver DLL (Incorporated Version). No royalties or additional
licenses are required to distribute such standalone programs. Note that you may not
transfer or duplicate the documentation ar other materials in such a way to enable end
usersto usethe DLL in their own products without acquiring alicense from ACS.

Table of Contents

SOFTWARE LICENSE AGREEMENTooiiiiieiiesie sttt eeeeee e see st st ste s seesaesaesaessessessessens 1
NEW TN VEISION 2.0ttt sttt e et bbb bt b e ae et et et e s b e besbesbenbesneeneeneas [
g 0o [0 ox i o] o IO R 1
(@0 0V 0] == 1 o o S 2
HANOAWEAIE LOCK........ciiteeiieiieiteeie ettt sttt sttt e bt e et esre et e neenneeneas 2
(@7 o] oo S 3
O = - = PSS 3
AT ST PO . ettt ettt e b e 4
TRE CADIE ... e ettt b e et enee 4
LS A= o= RSSO 5
@3 PP 5
VISUBl BESIC....euviiiiieiie ettt bbbt e et bbbttt e ettt e 6
IMPOrtant DLL USA0E NOLES........ccueiiiiei e 7
=070 (072 S 1Y/ oo L= RSSO 9
T 0] 00 [SRR 10
FUNCLION SUMIMEIY.......eeiieeiestiesie st esteeee st ee e ste e sseesteeseesseesseenseasaesseeseesseesseennesneenseensennennes 11
ArrayToWord: Assemble Array iNtO WOIdcoeoiieieiieneeeseesee e 12
Delays: Get/Set CommuniCatioNS DElAYS.........ccoeieereeiieeieiiesesiee e esee e see e s nee e 13
ForceCoil: Write (FOrce) SiNgIe Coilccooieiiieiieieeeeee e 15
ForceMultipleCoils: Write (Force) Multiple COilS........cccevieieiceeiiee e 16
IOMapping: Control 1/O MaPPINGccoueieererieneesieeie et see e see e sse e s e sre e saee s 17
KeyPort: Get/Set Hardware K&y POIT.........cccoieieiieiieie e e seeseesie e ee e sseenseeneens 18
Loopback: LOOPDACK TESL.......cciiiiieeeeee e 19
PortSetup: Get/Set CommuNiCationS ParameELerS.........cccveeereerieeieeseeniesieeseesie e seesee e 20
ReadInputRegisters: Read INPUt REGISLENS.ccouiiiiiieieseeee e 22
ReadlnputStatus: Read INPUL SEALUS.........cveeieciecieceesieeie e 23
ReadOutputRegisters. Read OUtpUt REGISLEYS.........coiiriiiiirieeree e 24
ReadOutputStatus; Read OULPUL STALUS..........ccveeveieerieeieeeeseesie e seese e ssee e seesseenseeneens 25
SendText: SENd TEXE 1O POooiiieeee e e 26
WordToArray: Break Word iNtO ATTAYcoeeeeeeeereerieseeseesieseesseessesseesseessesseessessesseeses 27
WriteMultipleRegisters: Write Multiple REQISIEIS........cooviieiinierieeee e 28
WriteRegister: Write SINGIE REGISLENoceeieeeeeceee e 29

Revision 2.210 June 6, 1998 Page i

MODBUS Communications Driver

New in Version 2.1

SentinelC Key

In order to improve reliability, we have changed to a new type of hardware key manufactured by
Rainbow Technologies. Unlike previous keys, this key can be used on parallel ports other than LPT1.
To change the port where the Driver will look for the key, call MBDRv with the function synopsis:

MB_Set Keyport (PORTN) ;
where PORTNIs the integer number of the parallel port where the key islocated (1 to 3).

If you are using the default port, LPT1, there is no need to call the Set Keyport function. Rather than
checking the key once upon loading, the Driver now checks the key at random intervals. The Driver
will return a status of -2 if the key is not detected.

The Set Keyport command is described in more detail on page 18.

Support for “ software key” protection has been discontinued.

MODBUS Communications Driver

Introduction

The mBDRvV Communications Driver is a Windows Dynamic Link Library (DLL) that enables Windows
programs to communicate with devices that understand the Gould MobBUS™ Process Control Protocol.

The driver provides an easy way for the user to develop programs that access a MODBUS device's
points and registers. Information is passed using standard variables in the user’s host language. The
MODBUS driver handles all protocol formatting and variable conversion in both directions. MBDRv
aways operatesin “RTU” (Binary) mode.

The moDBUS driver can be used with any language that supports calls to external DLLs, including
Microsoft Access, Microsoft Visual Basic, Microsoft Visual C/C++, and Borland Delphi.

“Include” files

Many languages (such as C) have facilities for “include’ or “unit” files that can establish constants and
function definitions. Wherever possible, ACS has supplied appropriate include files to make
programming easier.

Sample Files

Each version of the Driver is supplied with one or more demonstration programs. Please take the time
to examine and run these demonstrators, a few minutes with the samples can save you a lot of
frustration. Since the sample programs are known to run, you can use them to test your hardware setup.
If the demonstration programs won’t run, your own code probably won't either. Also, since we wrote
the samples, it will be easy for us to diagnose problems encountered while working with them.

The sample programs can give you a head start on your own application by showing you proven ways
to construct an application program. In fact, you may wish to smply “cannibaize” the Demonstrator
programs to fit your own application.

Help!

If you have trouble, have any questions about how the driver works, or want advice about special
applications, please be sure to contact us... atwo minute phone call could save you hours of frustration.
We are more than willing to help you use any unmodified software provided by ACS. We will also
answer questions about your programs (and help you debug programs that use MBDRV) as time permits.

If you find abug in MBDRvV, be sure to let us know. To help usfix the bug, document it as completely as
possible. If you are not sure whether the bug is in your program or the driver, please ship us your
program on an IBM compatible disk with documentation of the problem. If the problem isin the driver,
we will locate and repair it and return your disk as quickly aswe can.

Revision 2.210 June 6, 1998 Page 1

MODBUS Communications Driver

Copy Protection

Unfortunately, software piracy is a problem that plagues al program devel opers. the temptation to copy
an unprotected disk is great, and there is little actual danger to the pirate. But copy protection often of-
fends users and sometimes involves unnecessary “hassles’. In order to keep everyone honest with a
minimum of trouble for the user, ACS has decided to issue al of its single-user Driver products in
copy-protected form

Note. OEM versions of the Driver are not copy protected.

Hardware Lock

A Hardware Lock protects the single-user Driver. Programs protected with a Hardware Lock come on
ordinary floppy diskettes. You can (and should) make backup copies of the protected files, using the
DOS di skcopy command if you wish. The protection isincorporated into the files themselves and into
the locking device.

The Hardware Lock itself is a smal device resembling a “gender changer.” It has two 25-pin
connectors on it, one male and one female.

When you run a program protected with a Hardware Lock, the software will periodically examine your
computer’s parallel printer port. If the correct Hardware Lock is found, the program runs normally. |f
the locking device is not present, the program will not operate.

To use the Hardware Lock, ssmply copy the original program diskettes into a directory on your hard
disk. Next, plug the male end of the Hardware Lock device into your computer’s parallel printer port
(LPT1). If thereisa printer aready attached to your system, ssimply plug its cable into the female end
of the Hardware Lock.

Once you have attached the locking device, you are ready to run the software. Y our computer should
operate just as before; the device is only active when the software specifically queriesit. The Lock is
al so transparent to printing.

By default, the Driver looks for the Hardware Key on printer port LPT1. To change the port where the
Driver will look for the key, call MBDRV with the function synopsis.

MB_Set Keyport (PORTN) ;

where PORTN is the integer number of the parallel port where the key is located (1 to 3). See the
description of the Set Keyport command below (page 18) for more details.

If you are using the default port, LPT1, there is no need to cal the Set Keyport function. The Driver
will return a status of -2 if the key is not detected.

Page 2 June 6, 1998 Revision 2.210

MODBUS Communications Driver

Cabling

Normally, your ACS software will be supplied with a cable suitable for connecting the IBM PC or

compatible to the MODBUS device.

However, some of our customers find that they need to make their own cables. This section describes
the cable and pinouts at each end of the connection. The seria port pinouts are included for reference,
since they are not often described in computer manuals.

PC Serial Port

The IBM PC seria port isa DB25M (25-pin Male) connector. Here are its pinouts (pins not listed are

No Connection):

3
=

Output
[nput
Output
[nput
Input
Signal
Input
Output+
Output-
[nput+
Output
[nput

@OO\ICDU‘I-&OONH'

N N DN 2 B
a N O 00 B

Input-

Direction
Shield Ground

Signal

Transmit Data
Receive Data

Request to Send

Clear to Send

Data Set Ready
Ground

Carrier Detect
Transmit Current Loop
Transmit Current Loop
Recelve Current Loop
Data Termina Ready
Ring Indicator
Receive Current Loop

Note: Only strictly IBM-compatible serial ports implement the 20ma current loop

interface.

Revision 2.210

June 6, 1998 Page 3

MODBUS Communications Driver

AT Serial Port

ThelBM PC AT seria portisaDB9M (9-pin Male) connector. Here are its pinouts:

3
=

©OO\IOUU'IJ>OOI\JI—\|

Direction
Input
[nput
Output
Output

[nput
Output
[nput
Input

The Cable

Signal

Carrier Detect
Receive Data
Transmit Data

Data Terminal Ready
Ground

Data Set Ready
Request to Send
Clear to Send

Ring Indicator

Y ou can use the Driver with athree-wire (Transmit Data, Recelve Data, and Ground) cable. ACS uses

the following cable:

Conductor Signal IBM PC Pin
1 Ground 7
3 TD 2
4 RD 3

IBM AT Pin Device Pin
5 7
3 3
2 2

Unfortunately, not all MODBUS devices have standard seria ports. You may need to experiment in
order to find the correct cabling setup. A “breakout box” or similar device can be very helpful while
trying to set up a serial communications link.

Page 4

June 6, 1998

Revision 2.210

MODBUS Communications Driver

Interfaces

C/C++

Calling the Driver from C is straightforward. Each mobBuUSs command has its own function call within
the Driver Dynamic Link Library.

To be able to call the Driver, you must add its import library to your C or C++ project. The import
library is called MBDRVDLL. LI B. Thisfile tellsthe C linker which functions are contained in the Driver
DLL and how to find them.

In Microsoft Visua C++, you can add the import library by selecting the “Project / Add to Project /
Files” command, changing the “Files of type” selection to “Library files (.lib),” and then browsing to
VBDRVDLL. LI B.

You must also include the Driver DLL header file to be able to call Driver functions. This header file,
called MBDRVDLL. H, declares al the functionsin the DLL. Thisis normally done with adirective like:

#i ncl ude "nbdrvdl | . h"
at the top of the Cfile.

The above steps will make the Driver DLL functions callable from within your program.

A typical C Driver call

Most MoDBUS Driver calls follow the same general form. Calls that cause a MODBUS command to be
sent will include a MoDBUS address and one or more parameters:

status = MB_ReadCut put St at us(Address, Start, Count, Val ues);

This command will read the status of digital outputs (coils) on the mobBUS device. The Address
parameter specifies the MODBUS device' s address on the network (a number from 1 to 255). The Start
parameter indicates the first coil to be read, and the Count parameter tells the Driver how many coilsto
read. Lastly, the Vaues parameter is an array that will contain the coil states retrieved from the
MODBUS device.

Most mobBUS Driver DLL commands return a status code (assigned to the variable st atus in the
above example). Thiswill be zero if the function completed successfully or nonzero in the event of an
error. Error codes can be interpreted from the table below, or you can get a text description using the
MB_Error St ri ng function.

Revision 2.210 June 6, 1998 Page 5

MODBUS Communications Driver - Function QRF

Visual Basic

Visual Basic provides good support for calling external DLLs like the mobBUS Driver. To define the
Driver’s function calls for your VB program you'll need to add the file MBDEFS.BAS to your Visua
Basic project.

Once the definitions file has been added to your project, you can call the Driver as you would any other
function. For example, consider this code fragment:

Dimrc As |nteger
Dimv(64) As |nteger

rc = MB_Readl nput Regi sters(6, 30010, 3, v(0))
These statements will read three Input Registers starting at address 30010 from MoDBUS node 6 into the

array v. The Driver will return a status code (O for success or an error code) that VB will assign to the
variablerc.

If the call completes successfully, then v(0) will contain the contents of register 30010, v(1) the
contents of 30011, and so on. Therest of the Driver’ s functions are used in the same way.

Page 6 June 6, 1998 Revision 2.210

MODBUS Communications Driver

Important DLL Usage Notes

MODBUS Integers

MoDBUS is a 16-bit protocol. Accordingly, most of the integer variables used by the mobBusS Driver
DLL are 16-hit integers (shor t in most 32-bit Windows C compilers).

This is especially important when working with arrays. All arrays used by the Driver contain 16-bit
integers! Compiler type checking should help to protect you from inadvertent use of 32-bit integers (the
standard Ci nt in 32-bit mode).

The only exception is register addresses, which can exceed the 16-bit integer limit of 32767. In a
typical C program, these would be passed as unsi gned short. However, Visua Basic has no
unsigned integer type. Since many Driver developers use VB, register addresses are passed as| ong to
accommodate that language.

Loading the DLL

When creating a program that uses the MobBus Driver DLL, you need to make sure that the DLL itself
is accessible, both during development and when installing your finished program on an end-user’s
machine. This means that the DLL must be in the application directory, the Windows System directory
(system32 for Windows NT), or the Windows directory.

If Windows cannot find the Driver DLL file (called MBDRVDLL. DLL for the 32 bit version and
MBDRV16.DLL for the 16 bit version) when it is launching your application, it will close the program
after displaying a cryptic error message.

Programmers familiar with Windows API calls can make sure that Windows can find the DLL before
attempting to use it. This can help prevent a type of error that is often frustrating and confusing to end-
users.

The “Missing” DLL

Users of the Windows 95 and NT platforms occasionally call ACS to report that we have shipped them
adisk containing no Driver DLL. Actually, the DLL ison the installation disk, but it can be “invisible”
due to settings in the Windows Explorer.

By default, the Windows Explorer hides certain “system” file types, presumably to protect those files
from accidental deletion. Among others, the Explorer considers any file with a .DLL extension to be a
system file.

To make system files visible, open an Explorer window and select the “View / Options...” dialog box.
In the “Hidden Files’ frame, salect the “Show All Files’ radio button and click “OK.” Thiswill make
the Driver DLL visible.

Revision 2.210 June 6, 1998 Page 7

MODBUS Communications Driver - Function QRF

Differences between 16 and 32 bit DLLS

Though the code inside them is quite different, the 16 and 32-bit Driver DLLs function in much the
same way. For the devel oper, the key differences are in the file names:

16-bit 32-bit
Driver DLL MBDRV16.DLL MBDRVDLL.DLL
Driver Import Library MBDRV16.LIB MBDRVDLL.LIB

It's worth repeating that al integers used by the Driver (except register addresses) are 16-bit integers
on both 16-bit and 32-bit platforms.

The 16-hit Driver can be used (though generally with reduced performance) on 32-bit platforms, but
the 32-bit Driver can only be used on Windows 95 or Windows NT. It cannot be used on 16-bit
Windows.

Page 8 June 6, 1998 Revision 2.210

MODBUS Communications Driver

Broadcast Mode

Some MODBUS commands support “broadcast mode.” This mode essentially addresses the specified
command to all devices on the network.

To send acommand in broadcast mode, specify an Address of zero.

Attempting to use an Address of zero with a command that does not support broadcast mode will cause
the Driver to return an error. Consult your MODBUS device's documentation to see if it supports
broadcast mode, and if so, for which commands.

Revision 2.210 June 6, 1998 Page 9

MODBUS Communications Driver - Function QRF

Any function that returns a nonzero value indicates an error condition.

Error Codes

Error

Sentinel key missing (copy protection)
Could not receive

Could not transmit

Timeout

No Error

Broadcast M ode not allowed

Illegal MODBUS address

[llegal count

Bad output (coil) address

Bad input address

Bad output register address

Bad input register address

Return frame check failed

User frame not ready

No incoming frame to dissect

[llegal command number

Bad return frame

CRC error

Bad pointer (e.g., illegal array address)

[llegal communications parameter

10
11
12
13
14
15
18
19

MoDBuUS error return codes come back with 100 decimal added to them. MBDRV supports error codes
greater than 4 (if your device' simplementation of the MODBUS protocol uses them) in the same way.

Page 10

June 6, 1998

Revision 2.210

MODBUS Communications Driver - Functions

Function Summary

This section contains a“ synopsis’ of each function supported by the MoDBUS driver. The functions
arelisted in a“C-like” format showing the types of all variables. Note that this a hybrid of how the
functions are declared and how they would be used in areal program; it is strictly for explaining
the functions.

Note: Throughout this section of the manual, we will refer to “addresses’. These addresses are
used as defined in the mobBUS Process Control protocol manual. That is, they are decimal
numbers between 00000 and 49999. The corresponding addresses are:

Address Writable Type

OXXXX Yes Internal Discretes (digital points) and
Discrete Outputs (Cails)

Dxxxx No Discrete (digital) Inputs

3XXXX No Input Registers

AXXXX Yes Holding Registers

Revision 2.210 June 6, 1998 Page 11

MODBUS Communications Driver - Functions

ArrayToWord: Assemble Array into Word

SYNOPSIS

void MB_ArrayToWwrd(const short Values[], short *Wrd);

Val ues Input Array Integer Array
Wor d Output Vaue Integer (by reference)
DESCRIPTION

This function is the converse of MB_Wor dToArray. It packsthe first sixteen elements of the source
array Val ues into the destination integer Wor d. Element O of Val ues determines the status of Bit O
of the destination integer.

MB_ArrayTowr d checks each of thefirst 16 elements of the source array in turn. If the element is
nonzero, that bit of the target integer will be set. If the element is zero, the target bit will be
cleared.

Page 12 June 6, 1998 Revision 2.210

MODBUS Communications Driver - Functions

Delays: Get/Set Communications Delays

SYNOPSIS

short status MB_Cet Del ays(l ong *charDel ay, |ong *franeDel ay) ;

short status MB_Set Del ays(l ong charDel ay, |ong franeDel ay);

st at us Error Return Integer

char Del ay Character Timeout Long Integer (milliseconds)

f raneDel ay Frame Timeout Long Integer (milliseconds)
DESCRIPTION

The mobBUS protocol has no explicit framing, that is, it does not have codes that indicate when a
message begins or ends. Instead, the protocol relies on time. Specifically, the protocol says that the
end of each message is marked by a “silent” period lasting for at least the length of time required
to transmit two and one half characters at the current baud rate.

Because of this design, the Driver must use a pair of time delay values to determine when a
message is complete.

Character Timeout

The Character Timeout tells the Driver how long it should wait before determining that an
incoming message is complete. In most cases, the default value of 50 milliseconds should be
adequate.

Note. Thisisa32-bit quantity.

However, if you frequently have problems receiving replies from the MoDBUS device, or if you are
communicating at low baud rates, you may need to increase this value.

Note that the Character Timeout value is only used once an incoming message has started to arrive.
The Frame Timeout value determines how long the Driver will wait for an incoming message to

begin.

Reducing the Character Timeout value may provide increased throughput if you are trying to
sample at the maximum possible rate. However, values below 50 milliseconds may cause erratic
operation on some computers.

Frame Timeout

This value determines how long the control waits for an incoming MODBUS message to begin,
either in response to an outgoing command or while “listening” for an incoming command.

When you transmit a MobBUS command using any of the Driver’s command methods, it will wait
for a reply to begin arriving for the time specified by the Frame Timeout value. Once the reply

Revision 2.210 June 6, 1998 Page 13

MODBUS Communications Driver - Functions

begins to arrive, the control uses the Character Timeout value to detect when the incoming message
is complete.

If no incoming message begins arriving during the time specified by the Frame Timeout value, the
DLL returnsa Timeout Error.

EXAMPLE

MB_Set Del ays(30, 4000);

This example sets the Character Timeout to 30 milliseconds and the Frame Timeout to 4000
milliseconds (4 seconds). This means that the Driver will wait up to 4 seconds for an incoming
frame to begin (either in response to an outgoing command, or when waiting for an unsolicited
incoming command). Once the frame has begun to arrive, any pause of 30 milliseconds or more
will mark the end of the frame.

Page 14 June 6, 1998 Revision 2.210

MODBUS Communications Driver - Functions

ForceCoil: Write (Force) Single Coil

SYNOPSIS

short status = MB ForceCoil (short Address, long Coil, short Value);

st at us Error Return Integer

Addr ess Destination Address I nteger

Coi | Coil Number Integer

Val ue New Value I nteger
DESCRIPTION

Writes a new value to a single Output coil (address Oxxxx). The Driver will set the Coil to O if
"New Value" is zero, or to 1 otherwise.

EXAMPLE

short status = MB ForceCoil (3, 122, 1);

if (status !'= 0)
MessageBox(NULL, MB ErrorString(status), "ForceCoil Error",
MB_CX) ;

el se
MessageBox(NULL, "Coil 122 set to 1", "Force Coil",
MB_CX) ;

Revision 2.210 June 6, 1998 Page 15

MODBUS Communications Driver - Functions

ForceMultipleCoils: Write (Force) Multiple Coils

SYNOPSIS

short status = MB ForceMiltipl eCoil s(short Address, long Start, short
Count, short Values[]);

st at us Error Return Integer

Addr ess Destination Address I nteger

Start Starting Point No. Long Integer

Count Count Integer < 1950

Val ues Data Integer Array
DESCRIPTION

This command is the converse of the Read Output Status command. It writes new vaues onto
"Count " consecutive coils (address Oxxxx) starting at the Starting Point Number (St art). Likethe
Read Output Status command, the Data array, which contains the new values for the cails, is
"packed". This is, each 16-bit word in the Data array corresponds to 16 Output coils, beginning
with the LSb of array element 0 and continuing upwards toward Bit 15.

EXAMPLE
short bits[10]; /1 Val ue array
bits[0] = 0x27CD; /1 Set up bit val ues

bits[1] = 127;
short status = MB ForceMiltipleCoils(11, 144, 23, bits);
if (status !'= 0)
MessageBox(NULL, MB ErrorString(status), "ForceMultipleCoils Error",
MB_CXK) ;

This sample will write a total of 23 coil values. The least significant bit of bits[0] will
determine the new value of Coil 144, Bit 1 of bits[0] corresponds to Coil 145, and so on,
through Bit 7 of bi t s[1] , which corresponds to Coil 166.

Page 16 June 6, 1998 Revision 2.210

MODBUS Communications Driver - Functions

IOMapping: Control I/O Mapping

SYNOPSIS

short status MB_Get | OMappi ng(short *fl ag);

MB_Set | OVappi ng(short fl ag);

short status

st at us Error Return Integer
flag Flag I nteger
DESCRIPTION

Normally, the mobBuUs Driver DLL "maps’ the Register and Coil addresses that you pass to
conform to the Protocol's specifications. For example, if you refer to Holding Register 40127, the
actual binary address transmitted by MBDRYV will be 136, as defined by the Protocol.

However, if you are not working with Gould equipment, or if you need to control the actua
transmitted addresses, you can disable address mapping with this command.

Address Mapping is enabled by default. To disable Address Mapping, call MB_Set | Ovappi ng
with f | ag equal to 0. Any nonzero value enables mapping.

Note. When 1/O Mapping is on, the Driver DLL enforces proper register ranges
for all commands. For example, any command that takes an Input Register
address for an argument will return an error if the supplied address is not
between 30001 and 39999.

EXAMPLE

MB_Set | Ovappi ng(0) ; /1 Turn off 1/0O Mappi ng

Revision 2.210 June 6, 1998 Page 17

MODBUS Communications Driver - Functions

KeyPort: Get/Set Hardware Key port

SYNOPSIS

short status MB_Get Keyport (short *keyport);

short status MB_Set Keyport (short keyport);

status Return Code Integer
keypor t Hardware Key Port I nteger
DESCRIPTION

By default, the Driver assumes that the Hardware Key is located on LPT1. However, you
can tell the Driver to look for the Key on another paralel printer port with this command.
keyport selects the port where the Key is located and can range from 1 (for LPT1) to the
highest port number supported by your system (usualy 3).

EXAMPLE

/1 Select LPT2 for Hardware Key
MB_Set Keyport (2);

Page 18 June 6, 1998 Revision 2.210

MODBUS Communications Driver - Functions

Loopback: Loopback Test

SYNOPS S
short status = MB _Loopback(short Address, short *Di agnostic, short
*1 nfo);
st atus Error Return Integer
Addr ess Destination Address I nteger
Di agCode Testtorun Integer (by reference)
I nfo Test parameter Integer (by reference)
DESCRIPTION

Runs a diagnostic on the MoDBUS device. The Di agCode parameter specifies which diagnostic to
run; the | nf o parameter may be used by some diagnostic operations and ignored by others. Some
diagnostic functions will return information viathe | nf o parameter.

The specific diagnostics available vary from device to device, but diagnostic 0, the L oopback test,
is always implemented. This test smply sends back the | nf o value unchanged (so | nf o should be
the same before and after the call).

Returns O for success or an error code.

EXAMPLE

short dcode, dval;

dcode = 0; /1 Run the the basic Loopback test
dval = 1234; /1 Test value for | oopback

short status = MB_Loopback(3, &dcode, &dval);

if (status !'= 0)
MessageBox(NULL, MB ErrorString(status), "Loopback Error",
MB_CX) ;
el se

MessageBox(NULL, (dval == 1234) ? "Device 3 Loopback X"
"Devi ce 3 Loopback failed!",
"Loopback", MB OK);

Revision 2.210 June 6, 1998 Page 19

MODBUS Communications Driver - Functions

PortSetup: Get/Set Communications Parameters

SYNOPSIS

short status = MB Cet Port Setup(short *port, short *baudcode, short
*parity, short *stops, short *datasize);

short status = MB Set Port Set up(short port, short baudcode, short parity,
short stops, short datasize);

st at us Error Return Integer

port Port Number I nteger

baudcode Baud Rate Code Integer

parity Parity Mode I nteger

st ops Number of stop bits Integer

dat asi ze Data transmission size (hits) I nteger
DESCRIPTION

Use this command to change the Port and Speed used by the Driver. The port number can range
from 1 (for COM1:) to the highest communications port supported by your machine (usually 4 or
8). The Baud Rate code must be chosen from the table below.

Currently, MBDRV moDBUS "RTU Mode" communications are always set for 8 data bits and 1
stop bit. Accordingly, MB_Get Port Set up aways returns 1 and 8 for the stop bits and data size
variables. MB_Set Port Set up ignores these variables, but they are included for potential usein a
future version of the Driver DLL.

Note. When using the MB_Get Port Set up function, you can supply NULL pointers
for any values you don’t want to retrieve.

The Baud Rate code must be an integer from 0to 11. Hereisatable of the baud rate values:

Code BaudRate Code Baud Rate
0 110 6 4800
1 150 7 9600
2 300 8 19200
3 600 9 38400
4 1200 10 57600
5 2400 11 115200

Page 20 June 6, 1998 Revision 2.210

MODBUS Communications Driver - Functions

The Parity code must be one of the following values (“No Parity” isthe default):

Code Parity
0 None
1 Odd
2 Even
3 Mark
4 Space

Note: Not all PC serial ports support parity with 8 data bits (8 data bits are
required for RTU mode).

EXAMPLE

MB_Set Port Setup(2, 7, 0, 1, 8);

MessageBox(NULL, "Port 2 selected at 9600 baud.", "SetPort Setup",
MB_CX) ;

Revision 2.210 June 6, 1998 Page 21

MODBUS Communications Driver - Functions

ReadlnputRegisters: Read Input Registers

SYNOPSIS

short status = MB_Readl nput Regi sters(short Address, long Start, short
Count, short Values[]);

st at us Error Return Integer

Addr ess Destination Address I nteger

Start Starting Register No. Long Integer

Count Number of Registersto Read Integer < 120

Val ues Return Array Integer Array
DESCRIPTION

This command is analogous to the Read Output Registers command, except it returns the values of
Input Registers, one register per return array element. The Driver permits you to read up to 120
registers in one operation, though your MODBUS device may require shorter requests.

EXAMPLE

short regs[10]; /1 Return val ue array
short status = MB_Readl nput Regi sters(5, 30227, 3, regs);
if (status !'= 0)

MessageBox(NULL, MB ErrorString(status), "ReadlnputRegisters Error",
MB_CX) ;

Page 22 June 6, 1998 Revision 2.210

MODBUS Communications Driver - Functions

ReadInputStatus: Read Input Status

SYNOPSIS

short status = MB Readl nput St at us(short Address, long Start, short
Count, short Values[]);

st at us Error Return Integer

Addr ess Destination Address I nteger

Start Starting Input No. Long Integer

Count Number of Inputs to Read Integer < 1950

Val ues Return Array Integer Array
DESCRIPTION

This routine is similar to RDOS (Read Output Status), except it reads the status of Input points
(address like xxxx). The Input values will be packed 16 bits per return array element, just asin
the Read Output command.

The mobBUS Driver alows you to read up to 1950 bits in one operation, but your MODBUS device
may have alower transaction length limit.

EXAMPLE

short bits[10];

short status = MB_ReadQut put Status(7, 10020, 23, bits);

Revision 2.210 June 6, 1998 Page 23

MODBUS Communications Driver - Functions

ReadOutputRegisters: Read Output Registers

SYNOPSIS

short status = MB_ReadQut put Regi sters(short Address, long Start, short
Count, short Values[]);

st at us Error Return Integer

Addr ess Destination Address I nteger

Start Starting Register No. Long Integer

Count Number of Registers Integer < 120

Val ues Return Array Integer array
DESCRIPTION

This command returns the values of Output registers (address 4xxxx), one register per return array
element. The Driver permits you to read up to 120 registers in one operation, though your MODBUS
device may require shorter requests.

EXAMPLE

short regs[10]; /1 Return val ue array
short status = MB ReadQut put Regi sters(5, 40115, 3, regs);
if (status !'= 0)

MessageBox(NULL, MB ErrorString(status), "ReadQutputRegisters Error",
MB_CXK) ;

Page 24 June 6, 1998 Revision 2.210

MODBUS Communications Driver - Functions

ReadOutputStatus: Read Output Status

SYNOPSIS

short status = MB ReadQut put Status(short Address, long Start, short
Count, short Values[]);

st at us Error Return Integer

Addr ess Destination Device Address I nteger

Start Starting Coil Number Long Integer

Count Number of Coilsto Read Integer < 1950

Val ues Return Array Integer Array
DESCRIPTION

This function reads the status of Output Coils (address Oxxxx) on the MODBUS device. The cail
status values are returned in a "packed" format, with each bit in the return array corresponding to
one output coil. If the number of coils requested is not evenly divisible by 16, unused return array
bits will be set to 0.

The mobBUS Driver alows you to read up to 1950 bits in one operation, but your MODBUS device
may have alower transaction length limit.

EXAMPLE

short bits[10]; /1 Return val ue array
short status = MB _ReadQutput Status(12, 20, 23, bits);

if (status = 0)
MessageBox(NULL, MB ErrorString(status), "ReadCQutputStatus Error",
MB_CX) ;

This example reads a total of 23 hits starting at Output Coil Number 20 from the MODBUS device
with address 12. In the return array bi t's, element O will contain the current values of coils 20 -
35, with Bit 0 (the LSb) corresponding to Coil 20 and Bit 15 (the MSb) corresponding to Coil 35.
Element 1 of bi ts will contain Coils 36 - 42, with Bit O for Coil 36, Bit 7 for Coil 42, and Bits 8
-15setto 0.

If the function fails, the code sample displays an error Message Box, getting a string equivalent for
the error code using the MB_Er r or St ri ng function.

Revision 2.210 June 6, 1998 Page 25

MODBUS Communications Driver - Functions

SendText: Send Text to Port

SYNOPSIS

short status = MB _SendText (const char *txt);

st at us Error Return Integer
t xt String to Send String
DESCRIPTION

Sends an arbitrary text string to the seria port at the current baud rate. Strings are always sent
with one stop bit and no parity.

You may wish to use this command to send dialing strings to a modem. Any reply sent by the
destination device will be lost. status will return a nonzero vaue if the string could not be
transmitted for some reason.

Note. Your code must wait long enough for the string to be transmitted before
issuing a MobBUS command that uses the seria port. The MoDBUS Driver
DLL purges the serid port’s transmission buffer before transmitting each
command, so your string’s transmission could be interrupted if you don’'t
include adelay.

EXAMPLE

i f (MessageBox(NULL, "Dial phone?", "Send Text test",
MB_YESNO) == | DYES)
MB_SendText ("AT D 1 800 555 1212\r\n");

Page 26 June 6, 1998 Revision 2.210

MODBUS Communications Driver - Functions

WordToArray:

SYNOPSIS

void MB WordToArray(short Wrd,

Wor d Input Vaue
Val ues Output Array
DESCRIPTION

Break Word into Array

short Val ues[]);

Integer
Integer Array

This command splits an integer into its 16 component bits. It stores the bits in the first sixteen
elements of the target array. Bit O (the least significant bit) is assigned to element O of the array.

EXAMPLE

short bits[16];

MB_Wor dToAr ray(OxCC55, bits);

char wk[32];
char *p = wk;

short *vp = bits + 15;

for (int n=15;
{
if ('(n &7)) *p+t+ ="'
if ('(n & 3)) *p++ ="'
}

n>=0; n--)

*p++:(*vp__) ?lll |0|;

MessageBox(NULL, w Kk,

Revision 2.210

"OxCCh5 as Binary is...",

/] Add digits
/1 Add spacing
/1 Add spacing

MB_CX) ;

June 6, 1998 Page 27

MODBUS Communications Driver - Functions

WriteMultipleRegisters: Write Multiple Registers

SYNOPSIS

short status = MB WiteMiltipl eRegi sters(short Address, long Start,
short Count, short Val ues[]);

st atus Error Return Integer

Addr ess Destination Address I nteger

Start Starting Register No. Long Integer

Count Count Integer < 120

Val ues Data Integer Array
DESCRIPTION

Assigns values from Val ues to Count consecutive Holding registers (address 4xxxx) starting with
the register specified by Start. The Driver permits you to transmit up to 120 registers in one
operation, but your MODBUS device may have alower limit.

EXAMPLE
short regs[10]; /1 Val ue array
regs[0] = 10; /1 Set up register values
regs[1] = 20;
regs[2] = 30;

short status = MB WiteMiltipl eRegisters(7, 40118, 3, regs);
if (status !'= 0)

MessageBox(NULL, MB _ErrorString(status),
"WiteMiltipleRegisters Error”, MB (K);

Page 28 June 6, 1998 Revision 2.210

MODBUS Communications Driver - Functions

WriteRegister: Write Single Register

SYNOPSIS

short status = MB WiteRegi ster(short Address, |ong Register, short

Val ue) ;
st at us Error Return Integer
Addr ess Destination Address I nteger
Regi st er Target Register Long Integer
Val ue New Value I nteger
DESCRIPTION

This command changes the value of a single Holding register (address 4xxxx) on the MODBUS
device.

EXAMPLE

short status = MB WiteRegister(5, 40116, 120);

if (status !'= 0)
MessageBox(NULL, MB ErrorString(status), "WiteRegister Error",
MB_CX) ;

el se
MessageBox(NULL, "Device 5 register 40116 set to 120",
"Wite Register", MB X);

Revision 2.210 June 6, 1998 Page 29

