MODBUS™
Communications
Driver

User’'s Manual

Version 2.100 - March 21, 1993

Copyright © 1988 - 1998, Automation Consulting Services, Inc. All rights reserved.

Subject to change without notice.

SOFTWARE LICENSE AGREEMENT

IMPORTANT! The enclosed materials are provided to you on the express condition tregrgeu

to this Software License. By opening the diskette envelope or using any of the enclosed diskette(s)
you agree to the following provisions. If you do not agree with these license provisions, return these
materials to Automation Consulting Services, Inc., in original packaging with seals unbroken, within
3 days from receipt, for a refund.

1. This software and the diskette on which it is contained (the “Licensed Software”), is
licensed to you, the end user, for your own internal use. You do not ¢b&io the
Licensed Software or any copyrights or proprietary rights in the Licensed Software.
You may not transfer, sub-license, rent, lease, convey, copy, modify, translate,
convert to another programming language, decompile, or disassemble the Licensed
Software for any purpose.

2. The Licensed Software is provided “as-is”. All warranties and representations of any
kind with regard to the Licensed Software are hereby disclaimed, including the
implied warranties of merchantability and fithess for a particular purpose. Under no
circumstances will the Manufacturer or Developer of the Licensed Softwéieblee
for any consequential, incidental, special, or exemplary damages even if apprised of
the likelihood of such damages occurring. Some states do not allow the limitation or
exclusion of liability for incidental or consequential damages, so the above limitation
or exclusion may not apply to you.

Incorporated Driver Amendment

If you own the ACSuonguUs driver (Incorporated Version), this license is amended to
provide for the free or for-profit distribution of software incorporatmgsus Driver

code as follows: you may distribute executable programs containing the complete and
unalteredACS mopsus Driver (Incorporated Version). The Incorporated Version
Libraries may not be copied, sold, modified, distributed, or used by more than one
user at @ime; they are treated as Licens8dftware as described above. You can
only distribute the Driver as a part of self-standing executable code (EXE files). No
royalties or additional licenses are required to distribute such standalone programs.

For Windows DLLs, youmay distribute the DLL (distribution) version without
royalties, but you mawgot distribute the DevelopmeVBX) version. It istreated as
Licensed Software as described above.

Table of Contents

General INFOrMEALION.cooi i e ettt e e e e e e e e e et e e e s e nmmmmmmmmae s 1

(00] o)V = (0] (=T o 1o] o IR PP 3
HAIAWAIE LOCK.uutiiiiieiiiiiiiieee ettt e e e e e e e e e e e e e e e bbb ee e e T

(@ o] 11 o [4
O SY T = L o T PP 4.
F N ST =T =TI o PP TP TP 5......
TRE CADIE ... e 5.

0T g = Lo = 7
INtErPreted DASIC.......oieeeeeeee e e e e ———— VAR
QUICKBASIC VA.S ..ttt e e e e e e e e e e e sttt e e e e aeeeeaaeeens 10
TUIDO PASCAL V7.0 ittt ettt e e e e e e e e e e e e e e et e e e e e e e e aaaeeens 12
TP 14

[T o G O 0T [16

Function Quick Reference by FUNCLION NUMDET..........uuiiiiiiiiiiiiii 17
Variable Names used in Quick Reference Tablecoooveeiiiiiiiiiiiiiiiee e, 19

FUNCHON SUMMEIY ...ttt ettt e s e e e e s eeeaaaaans 21
RDOS --- Read OULPUL SEATUSccciiiiiieieeeiiiiiiiisss e e e e e e e e e e e e e eee e s s s s e e e e aeeaaaeeeeeeennnes 22
RDIS --- Read INPUL SEAIUScovviiii i e e e e e e e aaaa s 23
RDOR --- Read OULIPUL REJISTEISeviiiiiiiiiiiiieeeee ettt e e 24
RDIR --- Read INPUL REQISIEISceeveeieiiiiiiiiis e e e ettt e e e e e e e e e e e aeeeeeeeannnns 25
WRSC --- Write SINGIE COll......ccouiiiiiieeie e eaes 26
WRSR --- Write SiNgle REQISTENoviiiiiiiiiiiie e 27
(@] 27 N Qe oo] o] o F= 1ol SQ = SRS 28
WRMP --- Write MUItIPlIe POINEScoiiiiii e 29
WRMR --- Write MUltiple REQISTEIS.....ccviiiiiiiiiiieeee e 30
SNDUSR --- Send User COMMEANG.........cuuiiiiiiiiieeeiiiaiisieeiiiiiiirires e e e e e e e e e e e e e e e e e e s s snnnns 31
SETDEL --- Set CommuUNICAtIONS DEIAYS.uuiiiiiieeeiiiiiiiiiiiiee e 34
CHNPOR --- Set COmMM. ParameLerS......cccciiiiiieeeieeiiiiie e ettt e et eeeaaa e 36
RCVUSR --- Receive Incoming ComMmMaNdccceeeiiiiiiiiiiiiiiiiis e e e eeeeeeeeeiaine e e e e eee e 37
BRKRCYV --- DIiSSECt INCOMING Frame.......cooiiiiiiiiiiiiiiiiiiie ettt a e eeeenaeees 39
SRBCONYV --- Convert String to Register and Bit............cooooiiiiiiiiiiiiiiiiiiiiiiieeeeeeee 42
SRCONYV --- Convert String t0 REQISIEccooiiiiiieeciee e 43
WORDAR --- Break Word iNtO AITAY........uuuuuuiiaieeeeeeeeeeeeeeeeeiiiiissnnssseaeeeeaesaeeeeeeeesnsnnes 44
ARWORD --- Assemble Array iNt0 WOIcoooiiiiiiiiiiiiiiiiiiiee et 45
STEXT --- SENA TEXE 10 POIM....uiiiiiiiiiiiiiiiiiiiiiiieeeee et 46
IOMAP --- CoNtrol 1/O MaPPING ...ccoiiieieieeieei ettt a7
OPPAR --- Other POrt PAramMeterSuuuiiiiiiiiiieeeeie ettt e e e e e e e e e e 48
KEYPORT --- Set Hardware KeY POIcciiiiiiiiii ittt e et a s 49

Revision 2.100 March 21, 1993 Pagei

MODBUS Commmunications Driver

New in Version 2.1

There have been several important changes in the operationsdithes Communications Driver
since the last version. If you are updating from a previous version of the Driver, please read this
section carefully to ensure proper operation.

Resident Driver

The Resident driver has been discontinued. The complete functionality of the Driver is now
contained in whatvas formerlythe binding in previous versionskor example, for Quick Basic
version 4.5, the whole Driver is contained in the Quick Libraries.

There is no longer any resident portion of the Driver to load at the command line. In the case of
Quick Basic, starting QB with the normal command line:

QB program /L MBDRV

will load the driver automatically. There is no longer any need to loasdabev.exE file from the
DOS command line before starting your application; indeed, the new version does not use an
executable file.

SentinelC Key

In order to improve reliability, we have changed to a new type of hardware key manufactured by
Rainbow Technologies. Unlike previous keys, this key can be usezhratiel ports other than
LPT1. To change the port where the Driver will look for the e}l meDrRv with the function
synopsis:

CALL MBDRV(B_KEYPORT, STATUS, PORTN, B, B, B)
whereror1N is the integer number of the parallel port where the key is located (1 to 3).

If you are using the default port, LPT1, there is no neezhliothekeyprorT function. Rather than
checking the key once upon loadup, the Driver now chéuk&ey at random intervals. The Driver
will return a status of -2 if the key is not detected.

ThexkeyporT command is described in more detail on page 50.

Support for “software key” protection has been discontinued.

MODBUS Commmunications Driver

Introduction

Themsprvy Communications Driver is a memory resid®®S extension written in 8086achine
language which enablesssic programs to communicate with devices that understand the Gould
moDBUs™ Process Control Protocol.

The driver provides an easy way for the user to develop programs that acoessua device’s
points and registers. Information is passed using standard variablesugetisehost language; the
moneUs driver handles all protocol formatting and variabtsversion in both directionsMBDrY
always operates in “RTU” (Binary) mode.

ThemoDpUs driver is available with interfaces to a variety of languages, inclu@ilInterpreted
Basic, Microsoft Quickasic, Microsoft C, and Turbd®ASCAL. The individual interfaces are
described at the end of this section, just before the individual function synopses.

General Information

All of the language interfaces (called “bindings”) share the same general operating principles. First,
there is always a memory-resident portion of the driver that must be loaded yedocan access
themopBUs device. You mustload this resident portion directly fro®C-DOS. Once it has been
loaded, it will remain resident and available until you turn off or reset your computer.

This is especially important for languages like Microsoft Qeiskc and Interpretedasic that
provide a complete operating “environment”. For these languages, you must always load the Driver
beforeloading the language environment.

The individual language interfaces provide the necessary facilities to invoke the resident portion of
the driver. Usually, the language interface is a small object file or code segment that simply routes
your commands and data to and from the Driver’s resident portion.

“Include” files

Many languages, such as C and Turbo PASCAL, have facilities for “include” or “unit” files that can
establish constants and function definitions. Wherever pos#idl&, hassupplied appropriate
include files to make programming easier.

Sample Files

Each version of the Driver is supplied with one or more demonstration programs. Please take the
time to examine andun these demonstrators; a few minutes with the samples can save you a lot of
frustration. Since the sample programs lartewn to run, yowcan use them to test your hardware
setup. If the demonstration programs won’t run, yaun code probably won’t eitherAlso, since

we wrote the samples, it will be easy for us to diagnose problems encountered while working with
them.

Revision 2.100 March 21, 1993 Page 1

MODBUS Commmunications Driver

The sample programs can give you a head start onowaapplication byshowing you proven
ways to construct amapplication program. In fact, you mayisir to simply ‘tannibalize” the
Demonstrator programs to fit your own application.

Help !

If you have trouble, have any questions abdww the driverworks, or wantadvice about special
applications, please be sure to contast. a twominute phonecall could saveyou hours of
frustration. We are more than willing to help you use amyodifiedsoftware provided byACS.
We will also answer questions about your programs (and help you debug programs thairuge
as time permits.

If you find a bug inMBDRY, be sure tdet usknow. To help us fixhe bug, document it as
completely as possible. If you are not sure whether the bug is in your program or the driver, please
ship us your program on an IBMompatible disk with documentation of the problem. If the
problem is in the driver, we will locate and repair it and return your disk as quickly as we can.

The rest of this manual consists of language interface descriptionsyaopses oMBDRY'S func-
tions. In thesynopsesall variables are integetsmless otherwise noted. The variable B is used as a
dummy placeholder to ensure that six parameters are always passeavo

Note also that the functiosynopsesare written for the Interpreteglsic / Microsoft Quicksasic
version of the Driver. The other language interfaces use exactly the same function numbers and
parameters; the only difference between language interfaces is the “form” of the function calls.

Please read the function descriptions carefully before you use them to save yourself time and trouble
later. Be sure teave your program frequently Alwayssave it before you run it the firstne. If

you havemade a mistakésuch as aasic mBDRv call with less than six parameters), the computer

may crash and have to be reset. Unfortunatelsic makes absolutely no provision for the type of

error checking that would prevent these problems, so you have to be very careful.

Good luck!

Page 2 March 21, 1993 Revision 2.100

MODBUS Commmunications Driver

Copy Protection

Unfortunately, software piracy is a problem that plagaleprogram developers: the temptation to

copy an unprotected disk is great, and there is little actual danger to the pirate. But copy protection
often offends users and sometimes involves unnecessary “hassles”. In order to keep everyone hones
with a minimum of trouble for the useACS hasdecided to issuall of its single-user Driver
products in copy-protected form.

Note. Incorporated versions of the Driver are not copy protected.

Hardware Lock

The single-user Driver is protected by a Hardware Lock. Programs protected with a Hardware Lock
come on ordinary floppy diskettes. You can (and should) make a backup copy of the protected files,
using theDOS piskcopy command if youwish. The protection is incorporated into the files
themselves and into the locking device.

The Hardware Lock itself is a small device resembling a “gender changer”. It has two 25 pin
connectors on it, one male and one female.

When you run a program protected with a Hardware Lock, the software will periodizaliyine
your computer'sparallel printer port. If the correct Hardware Lockfasind, the progranmtuns
normally. If the locking device is not present, the program will not operate.

To use the Hardware Lock, simply copy the original program diskettes into a directory on your hard
disk. Next, plug thenale end of thédardware Lock device into your computeparallel printer

port (LPT1). If there is a printer already attached/aar system, simply plug iteable into the
female end of the Hardware Lock.

Once you haveattached the locking devicgpu are ready to run the softwarelour computer
should operate just as before; the device is aealyve when the software specifically queries it.
The Lock is also transparent to printing.

By default, the Driver looks for the Hardware Key on printer port LPT1. To change the port where
the Driver will look for the key, calBprv with the function synopsis:

CALL MBDRV(B_KEYPORT, STATUS, PORTN, B, B, B)

whereror1IN is the integer number of the parallel port where the key is located I t&ee the
description of th&ceyporT command below (page 50) for more details.

If you are using the default port, LPT1, there is no neethliothekeyporT function. The Driver
will return a status of -2 if the key is not detected.

Revision 2.100 March 21, 1993 Page 3

MODBUS Commmunications Driver

Cabling

Normally, yourACS software will be supplied with a cable suitalide connecting théBM PC or
compatible to thetopBus device.

However, some of our customers find that they needhaédke theirown cables. This section
describes the cable and pinouts at each end of the connection. The serial port pinouts are included
for reference, since they are not often described in computer manuals.

PC Serial Port

TheIBM PC serial port is @B25M (25-pinMale) connector. Here are its pinouts (pins not listed
are No Connection):

Pin Direction Signal

1 Shield Ground

2 Output Transmit Data

3 Input Receive Data

4 Output Request to Send

5 Input Clear to Send

6 Input Data Set Ready

7 Signal Ground

8 Input Carrier Detect

9 Output+ Transmit Current Loop
11 Output- Transmit Current Loop
18 Input+ Receive Current Loop

20 Output Data Terminal Ready

22 Input Ring Indicator

25 Input- Receive Current Loop

Note: Only strictly IBM-compatible serial portsnplement the 20ma current loop
interface.

Page 4 March 21, 1993 Revision 2.100

MODBUS Commmunications Driver

AT Serial Port

The IBM PC AT serial port is a DB9M (9-pin Male) connector. Here are its pinouts:

Pin Direction Signal

1 Input Carrier Detect

2 Input Receive Data

3 Output Transmit Data

4 Output Data Terminal Ready

5 Ground

6 Input Data Set Ready

7 Output Request to Send

8 Input Clear to Send

9 Input Ring Indicator
The Cable

You can use the Driver with a three-wire (Transmit Data, Receive Dataanohd)cable. ACS
uses the following cable:

Conductor Signal IBM PC Pin IBM AT Pin Device Pin
1 Ground 7 5 7
3 TD 2 3 3
4 RD 3 2 2

Unfortunately, not alMonsus devices have standard serial poru may need to experiment in
order to find the correct cabling setup. A “breakout box” or similar device can be very helpful while
trying to set up a serial communications link.

Revision 2.100 March 21, 1993 Page §

MODBUS Communications Driver - Intertaces

Interfaces

Interpreted BASIC

The Resident driver is provided in a file calle®brv.ExE. No Incorporated Version is available for
Interpreted BASIC. To load the driver into memory, type:

MBDRV/[«Enter]

at thePC-DOScommand level. The driver will load, display its signon banner, and return to PC-
DOS.

In the Interpreted (IBMpasic interface, information is passed to and from the psmresa normal
integer and string variables. Theasic “MBDRV” statement provides access to the communication
functions.

MeDRV communicates with theoosus device via younBM PC's serial port(COM1). Youwill
need the cable provided by ACS to connect the device to the computer.

To use the driver, you load_it on®m theDOS command level. After the driver is in memory, it

will remain there until you reset or turn off the computer. The driver consumes about 8 K of user
memory. Note thateprv does notonsume any aasic’s data or program space since it is loaded
beforeBasic.

The driver is provided in a file calledeprv.EXE. To load the driver into memory, type:

MBDRV/[<Enter]

at thePC-DOScommand level. The driver will load, display its signon banner, and return to PC-
DOS.

Once the driver is resident in memory, you can enterl@geBasic as many times as you wish.
You do not have to reload the driver unless you reset or turn off the computer.

In order tocall the Driver fromeasic, you must know where in memory it lecated. When you
load the driver, it stores its location (the segment number where it resides) in the inter-application
communication area reserved by DOS. The segment number can be found at address 0:4F2.

Once you have loadeghsic, you will need the segment numberdall the driver. To get it, you
should include the following statements in you program:

DEF SEG =0 [Sets user segment to O |

MBSEG = PEEK(&H4F2)+PEEK(&H4F3)*256 [Read mbdrv seg.]
DEF SEG = MBSEG [Establish access to driver |

MBDRV =0 [Call to offset O within segment |

These statements determine the location of the driver by reading it from address 0:4F2 and then set

up for calls to the driver.Assigning O tomBDRvV merely sets the destination address within the
segment to O.

Revision 2.100 March 21, 1993 Page 7

MODBUS Communications Driver - Intertaces

After you have executed these statements, yowcakhnhe driverwith a Basic MBDRv Statement of
the form:

CALL MBDRV(FNO,STATUS,ARG1,ARG2,ARG3,ARG4)

where FNO is the function numberSTATUS isthe return code, andRG1 through ARG4 are
parameters.

You mustalwayscall the drivemwith six parameters Thepasic machine language interface is not
very flexible; the only straightforward way to make the driver functions readily accessible is to use a
fixed length parameter block and a series of function codes.

The MBDRV Statement always expects variable parameters. There is no Weglltdoy value”.
Therefore, you must always assign constant parameters to a variable before execuigmrthe

Also, you should be very careful about the typésariables in themprv. There is no way for the

driver to makesure that you have passed the right number and type of parameters, so you may
disrupt your system if you make a mistake. In fact, the most common type of problem that you will
experience will probably be bizarre driver behavior due to incorrect parameter types or number.

You should also be surihat variables are defined before ypassthem to the driver. Basic
sometimes “hangs up” if you pass an undefined parameter to a machine language subroutine.

Since nearly all of the parameters requiredvbyrv are integers, you mayish to usethe oEFINT
statement at the beginning of your program to define one or more letters as “default” integers. |If
you do so, youan use variables beginning with those letters to communicate with the driver. This
method will avoid many annoying and difficult to trace problems.

The first parameter in thesr.r MBDRY Statement (FNO in the above example) is always the function
number. This integer number selects the driver function that yshn W use. There are about
twenty standard functions provided by the driver.

The second parametédSTATUS in the sample call) is an integeised to communicate error
conditions. Any nonzergalue indicates a problem occurred during the transfer. See the table of
error values for more complete informatioriou should probablgheck the status codes afeach

call.

The third, fourth, fifth, and sixth parameters vary according to the function being called. Again, you
must alwaygass a total of 6 parameters to the Driver!

Arrays

When using Arrays witlthe Interpreteaasic binding, always pasthem by their first element. In
otherwords, if youhave DIMensioned an arraalled INTAR with 10 elements, and you wish to
refer to it in amBDRY call, you should type INTAR(0). This willake care of problems sometimes
caused byasic, which considers “INTAR” a legal variable name distinct from INTAR the array.

The correct way to caMepry with the array argument ghown in thiscode fragment (all variables
are integers):

Page 8 March 21, 1993 Revision 2.100

MODBUS Communications Driver - Intertaces

DIM INTAR(5)

REG = 40300

CT=3

CALL MBDRV(MB.RDOR,STATUS,REG,CT,INTAR(0))

Sample Files

Two Basic program files are provided on the distribution diskette to help yomeisev. They are
namedMBHEADER.BaS and MBSHORT.BAS. MBHEADER.BaAs contains a commented header which
takes care of setufpr meDRrv calls. It declares variables beginning wWith’ to be integers and
assigns function numbers to named variables to make cafhingv functions easierFor example,
function number 1 (RDIS, Read Input Status) is assigned to the vai&@&RDIS. MBHEADER.Bas
also performs the standard call to establish communications.

MBsHoRT.BAs is a version oMBHEADER.BAS Which has all of the comments removed.

We suggest that you start with one of the header files when developing programs tiserise
Doing so will help you avoid some of the more annoying bugs that you might otherwise encounter.

There is another program file, calle®pemo.Bas, on the distribution diskette. This program is
intended as a sample of what can be done maibry. To use it, issue the following commands at
DOS command level:

MBDRV/[~Enter]
BASIC MBDEMO[<Enter]

It may take severaeconds for the program to display anything. Once the program is running, its
operation is more or less self-explanatory.

Mepemo should provide a good introduction #®sDrv's capabilities. Feel free to adapt or modify
MBDEMO if you wish. We recommend that you at least look awmarEMO’S program listing to get a
better feel for how the driver operates.

Revision 2.100 March 21, 1993 Page 9

MODBUS Communications Driver - Intertaces

QuickBASIC V4.5

Important Note! The Quickasic 4 Driver iSNOT compatible with thesasic interpreter, nor is it
compatible with Quickasic prior to V4. This DrivertanONLY be used with Quiakssic Version
4 or later.

When entering Quidasic, you must load the Driver when you load QB. To do this, nsakethat
the Quick Library filemBQe4DRV.QLB, supplied with the binding, is in the current directory. Then

type:
QB <zasic file> /L MBQB4DRV

This command loads Quisksic with the binding resident. If you do not load the binding, you will
get “Unresolved Subprogram Reference” errors.

To load the driver and Quisksic with the supplied Quidasic demo progranMBQBDEMO, type the
following commands:

QB MBQBDEMO /L MBQB4DR\[~Enter]

Note that the filemsDrv.H (the Driver Include file), found on the distribution disk, must be in the
current directory before you try to compile the demo.

Press|¢Shift | + to run the demo. Make sure that you have connected teidtheus device
before starting the program.

Arrays

When using Arrays witlthe Quickasic V4 binding, always pasthem by their first element. In
otherwords, if youhave DIMensioned an arraalled INTAR with 10 elements, and you wish to
refer to it in amBDRY call, you should type INTAR(O). If you always use this technique, you will
avoid problems caused by Queelsic moving an array between calls without updating the Array
Descriptor. If you specify INTAR(0), the Driver will always get what it expects, a pointer to the
first element of the destination array.

The correct way to caMepry with the array argument ghown in thiscode fragment (all variables
are integers):

DIM INTAR(5)

REG = 40300

CT=3

CALL MBDRV(mbRDOR,STATUS,REG,CT,INTAR(0))

Page 10 March 21, 1993 Revision 2.100

MODBUS Communications Driver - Intertaces

DECLARE & Header file

For your convenience, we have included a “Header” include file which defines all of the
MBQB4DRYV function numbers as CONSTants. This file is calBdrv.H. You may wsh to use
the SINCLUDE metacommand to bring this file into yausic Driver programs.

In this header file, themprv function numbers are defined as integer constants beginning with
“mb”. For example, the constant mbWRSC is defined as the integer 5, which corresponds to
function WRSC (Write Single Coil).

The file also includes the statement:

DECLARE SUB MBDRYV (SEG NF AS INTEGER, SEG ST AS INTEGER, SEG P1
AS ANY, SEG P2 AS ANY, SEG P3 AS ANY, SEG P4 AS ANY)

This statemenMUST be included in all QB 4orograms thatcall the Driver. It will cause
Quickeasic to send segmented addresses to the Driver, in addition to making sure that you always
call MmBDrvY with the proper number of parameters.

Technically, the DECLARE statement forces QBp@ssall MmepDrv parameters with segmented
addresses. QB 4 may or may not choose to place arrays and variables in “near” memory, depending
on a complex (almost erratic) set of criteria which cannot be tested by the Driver. Accordingly, the
QB 4 Driver must use “far” (segmented) addressing, which is lesseeitfi

Passing Near (unsegmented) parameters to the QB 4 Driver is guaranteed to be spectacularly
fatal!

You can achieve the same result as the DECLARE statement by chatigifghe ‘cart MBDRV”
statements in your program t@aiLs MBDRY”, but this will not countcall parameters like the
DECLARE statement does.

Array Note

IMPORTANT! For commands that take multiple arrays (BRKRGMDUSR,etc.) as parameters,
it is crucial that the arrays be in the same 80x#fia segment. This can be a problem in
Quickeasic, which often places data in multiple data segments.

Since Quickasic does not allow you to control segment allocation, you shtadd precautions.
Forexample, you could copy the array contents into separate vectors of a multi-dimensional array
(such arrays are always kept in a single segment).

Revision 2.100 March 21, 1993 Page 11

MODBUS Communications Driver - Intertaces

Turbo PASCAL V7.0

The standardasic version documentation still applies to the Turbo binding. There are only two
differences to keep in mind.

First, the Turbo binding returns tI®TATUS word as its returmalue instead of assigning it to a
parameter. In othewords, when yowexecute the mbdrv function, it returns tB&@ ATUS value.
This should be zero under normal circumstances.

Turbo PASCAL is ndbetter thareasic at handling variable-length parameter lists. It only permits
such lists in calls to some of its built-in functions, like writeln. Therefore, you ahwayspass a
function number and four parametersven if not all of them are used. Turbo’s strict type checking
will help you with this.

Second, unlikesasic, Turbo does permit value parameters in function calls. This capability is used
for the function number, which is the only parameter that is never changed by the Driver. In other
words, you can use a constant for the function number, something you could not daswitfyou

had to assign the function number to a variable before the call).

A sample Turbd®ASCAL program calledMBDTEST.PAS is also sygied. This program permits
you to monitor a table of registers on theppus device. To run it, load the Turbo PASCAL Driver,
load TurboPASCAL with MBDTEST adhe current file, angbress Alt-R to Rurthe sample. The
program should connect to thepsus device and ask you for a starting register and a length. Once
you have supplied these parameters, the program will run until you press a key.

The MBPASDRYV Unit

The Turbo 4 version of the Driver takes advantage of Turbo’s “unit” capability. To make the Driver
callable from a particular Pascal program, simply include the statement:

uses MBPASDRYV;

Note that the file MBPASDRV.TPU, supplied on the Driver distribution disk, must be present in the
current directory for this to work.

The MBPASDRYV “unit” contains a list constant function numbers used to ascoEssv functions.
All of these constants begin with “MB_"For example, the constaimMB_RDOR isdefined in the
unit as 3, the function number for Read Output Register. ThRIBRASDRV.I isincluded so that
you can see the list of constants found in the unit file.

Array Note

IMPORTANT! For commands that take multiple arrays (BRKRGMDUSR,etc.) as parameters,
it is crucial that the arrays be in the same 80xifia segment. This can be a problem in Turbo
Pascal, which often places data in multiple data segments.

Page 12 March 21, 1993 Revision 2.100

MODBUS Communications Driver - Intertaces

Since Turbo Pascal does not allow you to control segment allocation, you &daulorecautions.
Forexample, you could copy the array contents into separate vectors of a multi-dimensional array
(such arrays are always kept in a single segment).

Revision 2.100 March 21, 1993 Page 13

MODBUS Communications Driver - Intertaces

C

The Microsoft C binding is very similar to the standasdic interface. Calls to the driver take the
form:

status = mbdrv(fno,parmi,...);

where “fno” is an integer function number. mbdrv returns an integer value containing an error code
(STATUS value), if any. A return code of zero indicates that the operation was successful.

The function mbdrv() should be declared as:

extern int mbdrv();

Note: If you are using C++, you must use the syntax:

extern "C" int mbdrv();

The driver interface is found in a library file callmdprv.LiB. This file contains the actual mbdrv()
function, and you must link it with any C program that calls the dritvsory is designed for use
with the Small memory model. A second library fdmprvm, is provided for use with the Medium
memory model.

Note! The standard binding has no provision for operation with the Compact, Large,
or Huge models. Support for Compact/Large model prograagitable by
special order. Please see the “Large Model” section below for more
information on working with Large model programs.

The only major difference between the C binding and the standard interface concerns value and
address parametersasic does not permit value parameters, so the masayathat all parameters
must be passed by address.

Themeorv C binding permits value parameters, so you may use them as often as possible. As a
general rule, any scalar (int, char, etc.) that is not modified by the function should be passed by
value.

Note! If you intend to usemprv calls that contain constant “value” parameters, be very careful
aboutC’s automatic typing.For example, if you refer to Register 40137, C wiflss this as kbng

by default, since it is greater than 3276For properoperation, you must “cast” the constant to
unsigned intlike this:

st = mbdrv(MB_RDOR, 1, (unsigned int) 40137, 2, intar);
This command reads 2 Holding registers starting at 40137 into the integer array intar.

Any array parameter (strings, integer arrays, etc.) must be passed by address. This is the normal
convention in C.You must also pass arsgalar parameter which will be altered by the Driver by
address, usually by using the ‘&’ (address of) operator.

Page 14 March 21, 1993 Revision 2.100

MODBUS Communications Driver - Intertaces

Since the statusvord is returneddirectly by the driver, there is no need to include a “status”
parameter in each callYou may discard the statusord returned by mbdrv() if it is not needed.
Any nonzero status value indicates an error has occurred.

Further, whilerasic and PASCAL cannot handle variable-length parameter lists, C can. When
using those languages, you must always pass a fixed number of parameters to the driver, padding the
list with dummies as needed. With C, you need only ressumber of parameters required by the
particular function call.

A header filemBMscDry .H, is included on the distribution disk toake the driver easier tse with

C. This header file “#defines” all of the function numbers to symbols of the form “MB_name”. For
example, symbol MB_WRMR is assigned to 9, the function number for the WRMR (Write Multiple
Registers) call. To use this file, simply put the statement “#include <mbmscdrv.h>" near the top of
your C source file.

Large Model

If you ordered the Large modsbonsus driver, there are several important facts to keep in mind.
Basic operation of the Driver is unchanged, allifparameters must bpassed by referenceThe

Small model Driver relies on the fact that scalar data types and pointers have the same size (16 bits)
in the Small model. Large model pointers are 32 bits wide, so the Driver can no &moget
parameter lists containing both pointers and word-length parameters.

Since all Driver parametersust be passed by reference, you must assign numeric parameters to
variables before passing them to the Driver. The example above becomes:

int addr, count, intar[10], st;
unsigned int streg;

addr =1;
streg = 40137;
count = 2;

st = mbdrv(MB_RDOR, &addr, &streg, &count, intar);
Incorporated Version

The Incorporated Driver for Microsoft C is supplied as a LIBrary fieyisci.LiB (MBMSCIL.LIB for
the Large model). You should iclude this library name iryour Linker command. With the
Incorporated Driver, there is no resident portion to load; the entire Driver is included in the library.

Revision 2.100 March 21, 1993 Page 1§

MODBUS Communications Driver - Intertaces

Error Codes

Error Code
Buffer Overflow or lllegal Return -4
Frame

No Such Port (CHNPOR) -3
Driver Not Resident -2
Timeout -1
No Error 0
Checksum Error 1
lllegal Parameter 2
lllegal Command Code 101
lllegal Address 102
lllegal Data Value 103
Command Error 104

These codes are returned in BIBATUS variable upon completion of theall. Any nonzerovalue
indicates an error condition.

MobpBus error return codes come back with 100 decimal added to them (see errors 101 - 104 above).
MBDRV supports error codes greater than 4 (if your device’s implementation abtisers protocol
uses them) in the same way.

Page 16 March 21, 1993 Revision 2.100

MODBUS Communications Driver - Function Quick Reference

Function Quick Reference by Function Number

Function Name Function Parameter Parameter Parameter Parameter Description

Number 1 2 3 4
RDOS 1 ADDR STON COUNT &DAR Read Output Status
RDIS 2 ADDR STIN COUNT &DAR Read Input Status
RDOR 3 ADDR STOR COUNT &DAR Read Output Rieters
RDIR 4 ADDR STIR COUNT &DIR Read Input Registers
WRSC 5 ADDR STON DATA Write Single Coil
WRSR 6 ADDR STOR DATA Write Single Register
LOPBAK 7 ADDR TDATA RDATA Loopback Test
WRMP 8 ADDR STON COUNT DATAR Write Multiple Points
WRMR 9 ADDR STOR COUNT DATAR Write Multiple Registers
SNDUSR 10 SNDAR CTLAR Send User Command
SETDEL 11 LNGDEL QUIDEL DLMUL Set Communications Delays
CHNPOR 12 PORT BAUD Set Communications Parameters
RCVUSR 13 &ADDR &FC &RCVL &RDATA Receive Incoming Command
BRKRCV 14 RCVL CTLAR RDATA &DATAR Dissect Incoming Frame
SRBCONV 15 STR ®N &BITN Convert String to Register and Bit
SRCONV 16 STR ®N Convert String to Register

WORDAR

ARWORD

STEXT

IOMAP

OPPAR

KEYPORT

MODBUS Communications Driver - Function Quick Reference

17
18
19
20
21

22

DATA
DATAR
STR
FLAG
PARITY

PORTN

&DATAR

&DATA

STOPS

DATAB

Break Word into Array

Assemble Array into Word
Send Text to Serial Port
Control I/O Mapping

Other Comm. Port Parameters

Select Hardware Key port

MODBUS Communications Driver - Function QRF

Variable Names used in Quick Reference Table

Symbol

&

ADDR
BAUD
CTLAR
COUNT
DAR
DATA
DATAB
DATAR
DLMUL
FC
FLAG
INTAR
INTVAL
LNGDEL
OUTSTR
PARITY
PORT
QUIDEL
RCVAR
RCVL

RDATA

Description

Variable ma be modified |y function. Must bgassed P
reference.

Destination Device Address

Integer Baud Rate Code (0 - 7)
Integer “control” array

Integer count

Integer “destination” array

Integer value storage

Integer number of Data Bits (7 or 8)
Integer data array

Integer Delay Multiplier

Integer Function Code

Integer Flag

Integer array

Integer variable

Integer “Long” delay

String to transmit

Integer Parity flag (O = None, 1 = Odd, or 2 = Even)
Integer Comm. Port Number (1 or 2)
Integer “Quiet’delay

Integer “receive” array

Integer “received” length

Integer “returned data” array

MODBUS Communications Driver - Function QRF

SNDAR Integer “send” array

SRAR Integer “source” array

STIN Starting Input Number g&x»)
STON Starting Output Number g&xx

STOPS Integer Number of Stop Bits (1 or 2)

STIR Starting Input Register Numbemx{&x
STOR Starting Output Register NumbexrxX#x
STR String variable

TDATA Integer loopback transmit value

MODBUS Commmunications Driver - Functions

Function Summary

This section contains a “synopsis” @ich function supported by tkepsus driver. The first
nine functions are simple “transaction” functions that issue a command taotixers device
and return an answer. They are used to read and write dataviorties device.

The remaining functions are “support” routines used to configurettheus Driver, send and
receive user-generated commands, and perform conversions.

As mentioned above, eastsprv function is shown imasic format. However, only the form of
the call will change when the Driver is used with other languages.

Themopsus driver uses a total of four different variable types: Integer, Integer Array, Unsigned
Integer, and String. Integers are always 16alitds. Stringsre arrays of bytes less than 255
characters long.You will simply use the Integer, Unsigned Integer, and String types built into
your language; the language interface will take care of any necessary translation.

Remember! If a synopsis lists lesthan 4 ARGuments (in addition to tH&TATUS and
FUNCTION NUMBER parameters) you may still have passall four if you are using a
language likesastc or Turbo PASCAL that does not permit variable-length parameter lists. For
these languages, you must “pad” the argument list out to four ARGuments with “dummy”
variables. Please consult the Language Interfaces section for more information on this topic.

Note: Throughout this section of the manual, we will refer to “addresses”. These addresses are
used as defined in theopsus Process Control protocol manu#hat is, they aredecimal
numbers between 00000 and 49999. The corresponding addresses are:

Address Writable Type

OXXXX Yes Internal Discretes (gital points) and
Discrete Outputs (Coils)

IXXXX No Discrete (digital) Inputs
3XXXX No Input Registers
AXXXX Yes Holding Registers

Revision 2.100 March 21, 1993 Page 21

MODBUS Commmunications Driver - Functions

RDOS --- Read Output Status

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)

FNO =1 Function Number Integer

STATUS Error Return Integer

ARG1 Dest. Device Address Integer

ARG2 Starting Coil Number Unsigned Integer

ARG3 Number of Coils to Read Integer < 1950

ARG4 Return Array Integer Array
DESCRIPTION

This function reads the status of Output Coils (addresgXon themonsus device. The coill

status values are returned in a "packed" format, with each bit in the return array corresponding
to one output coil. If the number of coils requested is not evenly divisible by 16, unused return
array bits will be set to 0.

As a conveniencdRDOSalways stores thital number ofwvords returned athe firstelement
of the ARG4 array.

Themopsus Driver allows you to read up to 1950 bits in one operation, butyonius device
may have a lower transaction length limit.

EXAMPLE

DIM INTAR(5)

REG =20

CT=23

CALL MBDRV(MB.RDOS, STATUS, REG, CT, INTAR(0), B)

IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP

This example reads a total of 23 bits starting at Output Coil Nu2berIn the return array
INTAR, element O will contain 2, the number wbrds returnedElement 1 will contain the
current values of coils 20 - 35, with Bit O (the LSb) corresponding to Coil 20 and Bit 15 (the
MSb) corresponding to Coil 3%Element 2 oiINTAR will contain Coils 36 - 42, with Bit O for

Coil 36, Bit 7 for Coil 42, and Bits 8 - 15 set to O.

Page 22 March 21, 1993 Revision 2.100

MODBUS Commmunications Driver - Functions

RDIS --- Read Input Status

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)

FNO =2 Function Number Integer

STATUS Error Return Integer

ARG1 Destination Address Integer

ARG2 Starting Input No. Unsigned Integer

ARG3 No. of Inputs to Read Integer < 1950

ARG4 Return Array Integer Array
DESCRIPTION

This routine is similar to RDOS (Read Output Status), except it reads the status of Input points
(address like @xx®. The Input values will be packed 16 bits per return array element, just as in

the Read Output command.

Like RDOS, RDIS always stordke total number ofvords returned athe first element of the
ARG4 array.

Themopsus Driver allows you to read up to 1950 bits in one operation, butyonius device
may have a lower transaction length limit.

EXAMPLE

DIM INTAR(5)

REG = 10020

CT=23

CALL MBDRV(MB.RDIS, STATUS, REG, CT, INTAR(0), B)

IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP

Revision 2.100 March 21, 1993 Page 23

MODBUS Commmunications Driver - Functions

RDOR --- Read Output Registers

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)

FNO =3 Function Number Integer

STATUS Error Return Integer

ARG1 Destination Address Integer

ARG2 Starting Register No. Unsigned Integer

ARG3 No. of Registers Integer < 120

ARG4 Return Array Integer array
DESCRIPTION

This command returns the values of Output registers (address).4one register per return
array element. The Driver permits you to read up to 120 registers in one operation, though your
MODBUs device may require shorter requests.

EXAMPLE

DIM INTAR(5)

REG =40115

CT=3

CALL MBDRV(MB.RDOR, STATUS, REG, CT, INTAR(0), B)

IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
FOR L=0TO 2 : PRINT REG+LA" ="INTAR(L) : NEXT L

Page 24 March 21, 1993 Revision 2.100

MODBUS Commmunications Driver - Functions

RDIR --- Read Input Registers

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)

FNO =4 Function Number Integer

STATUS Error Return Integer

ARG1 Destination Address Integer

ARG2 Starting Register No. Unsigned Integer

ARG3 No. of Registers to Read Integer < 120

ARG4 Return Array Integer Array
DESCRIPTION

This command is analagous to the Read Output Registers command, except it returns the values
of Input Registers, one register per return array element. The Driver permits you to read up to
120 registers in one operation, though ymupsus device may require shorter requests.

EXAMPLE

DIM INTAR(5)

REG = 30227

CT=3

CALL MBDRV(MB.RDIR, STATUS, REG, CT, INTAR(0), B)

IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
FOR L=0TO 2 : PRINT REG+LA" ="INTAR(L) : NEXT L

Revision 2.100 March 21, 1993 Page 25§

MODBUS Commmunications Driver - Functions

WRSC --- Write Single Coil

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)

FNO =5 Function Number Integer
STATUS Error Return Integer
ARG1 Destination Address Integer
ARG2 Coil Number Integer
ARG3 New Value Integer
ARG4

DESCRIPTION

Writes a new value to a single Output coil (address<. The Driver will set the Coll to O if
"New Value" is zero, or to 1 otherwise.

EXAMPLE

CNO =122

DAT=1

CALL MBDRV(MB.WRSC, STATUS, CNO, DAT, B, B)

IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Coil 122 setto 1"

Page 26 March 21, 1993 Revision 2.100

MODBUS Commmunications Driver - Functions

WRSR --- Write Single Register

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)

FNO =6 Function Number Integer
STATUS Error Return Integer
ARG1 Destination Address Integer
ARG2 Target Register Unsigned Integer
ARG3 New Value Integer
ARG4
DESCRIPTION

Ths command changes the value of a single Holding register (addves$ dn themonsuUs
device.

EXAMPLE

REG =40116

DAT =120

CALL MBDRV(MB.WRSR, STATUS, REG, DAT, B, B)

IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Register 40116 set to 120"

Revision 2.100 March 21, 1993 Page 27

MODBUS Commmunications Driver - Functions

LOPBAK --- Loopback Test

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)

FNO =7 Function Number Integer
STATUS Error Return Integer
ARG1 Destination Address Integer
ARG2 Transmit Data Integer
ARG3 Returned Data Integer Array
ARG4

DESCRIPTION

This command performs a test to see Mapsus device is present and operating properly. To
perform the Loopback test, send a known integer value as ARG gifes well, theSTATUS
variable should be 0 on return. The Loopback test will also return two values in Integer Array
ARG3 : Element Oshould always be 0, ariElement 1should contain the Integer value sent as

ARG2.

Note that this command uses the "Mode10brUs loopback test. "Mode 1" is not supported.

EXAMPLE
DIM INTAR(3)
DAT = 1234

CALL MBDRV(MB.LOPBAK, STATUS, DAT, INTAR(0), B, B)
IF STATUS<>0 THEN PRINT"Loopback Communication Error:STOP
IF INTAR(0)<>0 OR INTAR(1)<>DAT THEN PRINT"Loopback failed."

Page 28 March 21, 1993 Revision 2.100

MODBUS Commmunications Driver - Functions

WRMP --- Write Multiple Points

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)

FNO =8 Function Number Integer

STATUS Error Return Integer

ARG1 Destination Address Integer

ARG2 Starting Point No. Unsigned Integer

ARG3 Count Integer < 1950

ARG4 Data Integer Array
DESCRIPTION

This command is the converse of the Read Output Status command. It writes new values onto
"Count" (ARG3) consecutive coils (addresgx®y starting at the Starting Point Number
(ARG2). Like the Read Output Status command, the Data array, which contains the new values
for the coils, is "packed”. This isach 16-bitword inthe Data array corresponds to 16 Output
coils, beginning with the LSb of array element 0 and continuing upwards toward Bit 15.

EXAMPLE

DIM INTAR(5)

CNO =144

CT=23

INTAR(0) = &H27CD : INTAR(1) = 127

CALL MBDRV(MB.WRMP, STATUS, CNO, CT, INTAR(0), B)

IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP

This sample will write a total of 23 coil values. The least significant biNGIAR(0) will

determine the new value of Coil 144, Bit 1IBITAR(0) corresponds to Coil 145, and so on,
through Bit 7 of INTAR(1), which corresponds to Coil 166.

Revision 2.100 March 21, 1993 Page 29

MODBUS Commmunications Driver - Functions

WRMR --- Write Multiple Registers

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)

FNO =9 Function Number Integer

STATUS Error Return Integer

ARG1 Destination Address Integer

ARG2 Starting Register No. Unsigned Integer

ARG3 Count Integer < 120

ARG4 Data Integer Array
DESCRIPTION

Assigns values from ARG4 Bountconsecutive Holding registers (addreggx¥ starting with
the register specified b&RG2. The Driver permits you to transmit up to 120 registers in one
operation, but youstopsus device may have a lower limit.

EXAMPLE

DIM INTAR(8)

REG =40118

CT=3

INTAR(0) =10 : INTAR(1) =20 : INTAR(2) = 30

CALL MBDRV(MB.WRMR, STATUS, REG, CT, INTAR(0), B)

IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Registers sent.”

Page 30 March 21, 1993 Revision 2.100

MODBUS Commmunications Driver - Functions

SNDUSR --- Send User Command

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)

FNO =10 Function Number Integer
STATUS Error Return Integer
ARG1 Send Data Integer Array
ARG2 Control List Integer Array
ARG3
ARG4

DESCRIPTION

This command is designed to allow you to send commands not included in the basic set
supplied with the Driver. This command handles the transmission half of the openalion
(See the RCVUSR command for more information).

To use this command, you musttialize two arrays. The "Send Data" array containsdag&a
words and bytes that make up the command. The "Control List" array determines the format of
the string.

Each element of the Control array corresponds to one element of the Data array. When building
the command string, the SNDUSR command examines the two lowest bits of each Control array
element.

Control array Bit 0 is the Byte / Word Selector. If Bit O is zero, the corresponding element of
the Data array will be appended to the transmission string as a Byte. If Bit 0 is 1, the Data
element will be appended as a Word. Note that the Driver will automaticallytbesdygogh and

low order bytes to convert the Word from Intel format toslo@ruUs protocol format.

Control array Bit 1 is the "end of string" marker; when the SNDUSR command detects Bit 1 set,
it appends the checksum word and sends the command string to the serial port.

The SNDUSRcommand will proceed through both Control and Data arrays one element at a
time, adding Bytes owords as specified until the End of String bitdistected in the Control
array, or until the string length reaches the limit of 252 bytes. It will then transmit the command
and return immediately to theser programSNDUSR does nowait for the reply! You must

use the RCVUSR command to retrieve #fuwsus device's answering string.

Note also that you must supply bytes for the entire string, including the Destination Address and
Command Number.

You can also us&NDUSR toanswer command strings originatifigm the mobeus device (in
MODBUS terminology, this is called "Slave mode™). Normally, tB& PC would bethe Master

Revision 2.100 March 21, 1993 Page 31

MODBUS Commmunications Driver - Functions

device, originating commands and awaiting replies. However, you can operate in Slave mode
using theRCVUSR command to await an incomingooeus command, then reply with the
SNDUSR command.

Note: SNDUSR examines only Bits 0 and 1 of the Control array elements. This
can be important, because it allows youpiace theSNDUSR and
BRKRCV control masks into the same array for operations involving
user-defined commands. SNDUSR never alters the Control array.

IMPORTANT! When using th6&NDUSRcommand, it iscrucial that the Send and Control
Arrays be in the same 80x86 data segment. This is normally not a problem unless you are using
a language like Quick Basic or Turbo Pascal, languages that often place data in rdattple
segments.

If you are using a language that does not allow you to control segment allocation, you should
take precautions.For example, you could copy the Control and Data array contents into
separate vectors of a two-dimensional array (such arrays are always kept in a single segment).
In Turbo Pascal, you can generally force the same segment by making sure that both arrays are
either local or global variables.

EXAMPLE

DIM CTRL(10),DAT(10)
CTRL(0) =0: DAT(0) = &H11 "Byte 0 : Address, Hex 11
CTRL(1)=0:DAT(1)=2 "Byte 1 : Function 2 (RIS)
CTRL(2) =1: DAT(2) = &HC4 ' Bytes 2,3 : Start, 196
CTRL(3) =1: DAT(3) = &H16 'Bytes 4,5 : Length, 22
CTRL(4)=2 " End of String
CALL MBDRV(MB.SNDUSR, STATUS, B, DAT(0), CTRL(0), B)
IF STATUS<>0 THEN PRINT"Send --- "STATUS:STOP
ADDR=0:FC=0:RCVL=0 "Initialize variables that

will be returned by RCVUSR
CALL MBDRV(MB.RCVUSR, STATUS, ADDR, FC, RCVL, DAT(0))

This exampleshowsthe procedure used to send command number 2, "Read Input Status”. Of
course, you would normally use the built-in functiBDIS to do thisbut it makes a good
example. The equivalent RDIS call is:

DIM INTAR(5)

REG = 100197

CT=22

CALL MBDRV(MB.RDIS, STATUS, REG, CT, INTAR(0), B)

IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP

First, the code fragment initializes the control and data arrays. The final string to be sentis: 11
02 00 C4 00 16 + checksum. The control array is therefore set to Byte (0), Byte (0), Word (1),

Page 32 March 21, 1993 Revision 2.100

MODBUS Commmunications Driver - Functions

Word(1), End (2). This means that Elements 0 and 1 of the Data array will be formatted as a
Bytes, and Elements 2 and 3 of the Data array will be formattedads. As soon aBlement
3 has been appended, the string will be sent.

After transmitting the request, the code fragment awaits a reply usiiga¥EISR command.
If all goes well, themopsUs device's reply will be stored in the DAT array, along with the return
address in ADDR, return Function Code in FC, and received length in RCVL.

Important Note. If you are planning to design yoawn command strings, it igery important

to note the address mapping. Normally, this function is perfoautamatically by the Driver
before the message is transmitted, but you must perform the same mapping for your own
messages.

In this case, though thmall is asking for values beginning at address 10197 atltealaddress

word sent is 196decimal). Process ContrAddressesre always sent with their "range” digit
(Ixxxxin this case) removed. Furtherpeus internal addresses actually start from 0, although
they are normally specified beginning at 1. Hence, location 10197 actually corresponds to
internal location 196.

Revision 2.100 March 21, 1993 Page 33

MODBUS Commmunications Driver - Functions

SETDEL --- Set Communications Delays

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)

FNO =11 Function Number Integer
STATUS Error Return Integer
ARG1 "Long" Delay Integer
ARG2 "Quiet" Delay Integer
ARG3 Delay Multiplier Integer
ARG4

DESCRIPTION

The mopBUSs protocol does not have a specific packet-framing system. Instead, it relies on
delays to indicate the beginning and end of transmissions. The SETDEL command allows you
to adjust the delay periods used by MBDRV.

Long Delay. The "Long" Delay determineBow long MBDRV will wait for a reply to a
command request. If you send a command anduthesus device does not begin its reply
before the Long Delay has elaps®tBDRV will return the Timeout error code, -1. The Long
Delay value defaults to 800, which is approximately equivalent to 5 seconds.

Quiet Delay. The "Quiet" Delay determines the "end of message" delay. Sinderdbess
Control Protocol does not have a specific way of marking the end of a message, this delay is
used to regulate the length tine MBDRV will wait before it decides that the end of the
transmission has been reached. The default "Quiet" delay value is 10, which is approximately
equal to 500ms.

In practice, wherMBDRYV is waiting for an incoming string, it begins by counting down the
Long delay. When the first character arrives, the delay timer is reset to the "Quiet" delay. Each
succeeding character restarts the timer with the "Quiet" d&/BDRV detects the end of the
message when the incoming line has been quiet for a long enough period to exhaust the Quiet
delay.

Officially, the Process Control Protocol specifies that the Quiet delay can be as short as 4ms (for
9600 baud). Experience, however, has proven that delays that short may result in truncated
messages. Since the Driver is designed to operate "one message and reply at a time", longer
"Quiet" delays have no harmful effect except to slow MBDRV's response time slightly.

Delay Multiplier . The Delay Multiplier is a constant that determines the "slope" of the delay
timer's response. Its default value of 800 (about 50ms per unit) should not normally be altered,
unless you need to set the delay toeaact time value. Please call usydu need to set the
delay timer to a specific time.

Page 34 March 21, 1993 Revision 2.100

MODBUS Commmunications Driver - Functions

If you wish tochange one or two of the delay constants without disturbing the others, simply
pass -1 as the new value for the delay(s) that you do not wish to change.

Sadly, there is no hard and fast rule for the proper delay times to use. In fact, delay times can
be one of the most frustrating aspects ofsierus protocol. Though the defaults should be
adequate for most situations, you will probablystwto experiment to determine the best
tradeoff between response speed and reliability.

EXAMPLE

NQD =15:DMY =-1
CALL MBDRV(MB.SETDEL, STATUS, DMY, NDQ, DMY, B)

This example sets the Quiet delay to 15, leaving the Long delay and Delay Multiplier
unchanged.

Revision 2.100 March 21, 1993 Page 3§

MODBUS Commmunications Driver - Functions

CHNPOR --- Set Comm. Parameters

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)

FNO =12 Function Number
STATUS Error Return
ARG1 Port Number
ARG?2 Baud Rate Code
ARG3
ARG4

DESCRIPTION

Use thiscommand to change the Port and Speed used by the DAWSE1, the port number,
can be either 1 (forCOM1:) or 2 (for COM2:).

MBDRYV moDBUS
communications are always set for 8 data bits, 1 stop bit, no parity.

"RTU Mode"

The Baud Rate code must be an integer from O to 7. Here is a table of the baud rate values:

Cod Baud Rate
e
0 110
1 150
2 300
3 600
4 1200
5 2400
6 4800
7 9600
EXAMPLE
NPR =2
BAU =6

CALL MBDRV(MB.CHNPOR, STATUS, B, NPR, BAU, B)

IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP

Page 36 March 21, 1993

Revision 2.100

MODBUS Commmunications Driver - Functions

PRINT"Port 2 Selected at 9600 baud." : PRINT

Revision 2.100 March 21, 1993 Page 37

MODBUS Commmunications Driver - Functions

RCVUSR --- Receive Incoming Command

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)

FNO =13 Function Number Integer

STATUS Error Return Integer

ARG1 Address Return Integer

ARG2 Function Code Return Integer

ARG3 Receive Length Return Integer

ARG4 Data Return Integer Array
DESCRIPTION

This command is normally used for one of two purposes: retrieving answers to commands sent
via SNDUSR, orawaiting incoming commands in Slave Mode. It simply waits for and returns
an incoming Process Control Protocol data frame. If no frame arrives withiimgnepecified

by the "Long" delay (see SETDELMBDRYV will return a STATUS value of -1 (Timeout

Error).

If a correctly-formatted strindoesarrive, MBDRYV will pass back all the information needed to
decode it. FirstARG1 will return the "DestinatiorAddress” specified ithe incoming frame,
ARG2 the Function CodeARG3 the frame length in bytes, anlRG4 the frame itself.
MBDRYV also tests the frame's Checksum and retur83ATUS of 1 (Checksum Error) if the
checksum is incorrect.

The Data Return arrapRG4, contains the incoming frame in packed bytes. In othends,
the complete incoming string is saved ARG4 starting at the LSB oARG4(0). Youwill
probably wish to usthe BRKRCV command to unpack the command into byteswaods as
appropriate. SincRCVUSR returns botthe DestinatiorAddress andhe Command Number,
you can design different handlers for each Node and Command number.

Important Note. Make sure that the Data Return arfdgG4 isdimensioned large enough to
accomodate the longest incoming frame that you expect to receive. Generally, you should allow
for up to 255 bytes (128 integer elements) of incoming data.

If you have sent a user-constructed command withSN®USR command and are using
RCVUSR toretrieve the reply, be sure tall RCVUSR asquickly as possible afteeNDUSR
returns to ensure that no incoming bytes are lost.

If you are usingRCVUSR toawait command codes frommopBUs "Master” device, you will
probably wish to place the CALL in a loop that repeats until a legal incoming frame is detected.

Page 38 March 21, 1993 Revision 2.100

MODBUS Commmunications Driver - Functions

EXAMPLE

DIM RCVAR(130) ' Slave Mode example
ADDR=0:FC=0:RCVL=0
STATUS =-1
WHILE STATUS =-1
CALL MBDRV(MB.RCVUST, STATUS, ADDR, FC, RCVL, RCVAR(0))

WEND
PRINT"Received command number'FC" addressed to node"ADDR

Revision 2.100 March 21, 1993 Page 39

MODBUS Commmunications Driver - Functions

BRKRCYV --- Dissect Incoming Frame

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)

FNO =14 Function Number Integer

STATUS Error Return Integer

ARG1 Frame Length Integer

ARG2 Control Array Integer Array

ARG3 Frame Array Integer Array

ARG4 Output Array Integer Array
DESCRIPTION

The BRKRCV command is designed to break up the data in an incoming command or reply
frame into its component parts. It basically performs the inverse @NI#JSRcommand's
assembly process. LIKeNDUSR, BRKRCYV processesdl of the elements in the Frandgray

one at a time, breaking them up into the elements of the Output Array according to the elements
of the Control array.

Each element of the Control array corresponds toeteraent of the Output array. The Control
array elements are interpreted as bit masks: Bit 2 is the Byte / Word selector, and Bit 3 is the
End marker. MBDRV will proceed through the returned frame one bytevord at atime as
indicated by the Control array, writing the extracted data into the Output array one element for
each step.

If Bit 2 of the current Control array element iSMBDRV will copy the next byte of the source

frame into the next Output array element. Note that bytes are treated as unsigned 8-bit integers,
so the values returned for Byte elements range from 0 to 255. If Bit 2MBRRV will

transfer a Word by swapping and copying the next two bytes of the source frame into the next
element of the Output array.

Bit 3 marks the end of the Control list. If any source frame bytes are left, they will be copied
using the last valid ContreVord beforethe End marker. This feature is useful for commands
like RDIS and RDOR, where yowvill want to copy all data after the header information as
words, but youmay notknow exactly how many bytes are actually going to be in the frame
until runtime. In this case, just makere that the last two elements of the control array are
01xx and 10xx binary respectively.

Note: BRKRCV examines only Bits 2 and 3 of the Control array elements. This
can be important, because it allows youpiace the SNDUSR and
BRKRCYV control masks into the same array for user-defined commands.
BRKRCYV never alters the contents of the Control array.

Page 40 March 21, 1993 Revision 2.100

MODBUS Commmunications Driver - Functions

IMPORTANT! When using the BRKRCV command, itasicial that the Control, Frame, and
Output Arrays be ithe same 80x868ata segment. This is normally not a problentess you
are using a language like Quick Basic or Turbo Pascal, languages thaplaitendata in
multiple data segments.

If you are using a language that does not allow you to control segment allocation, you should
take precautionsFor example, you could copy the Control, Frame, and Output array contents
into separate vectors of a three-dimensional array (such arrays are always kept in a single
segment). In Turbo Pascal, you can generally force the same segment by making sure that all
three arrays are either local or global variables.

EXAMPLE

Supposéhat you have useRCVUSR toretrieve the following incoming command string (in
Hex): 16 10 00 87 00 02 04 00 OA 01 02

RCVUSRwill return (in decimal)ADDR = 22, FC = 1gWrite Multiple Registers), RCVL =
11. Suppose alsihat the frame data is stored in an array calB#®R. The following code
segment is designed to process theite Multiple Registers command. In a practical
application, this might be used to accept data written into the IBM PC lmotlress device.

DIM CTLAR(8),0UTAR(128)

CTLAR(O) =0 ' Byte 0 : Address

CTLAR(1) =0 'Byte 1 : Function Code

CTLAR(2) =4 ' Bytes 2,3 : Start Address

CTLAR(3) =4 ' Bytes 4,5 : Quantity

CTLAR4) =0 ' Byte 6 : Byte Count

CTLAR(®) =4 ' Bytes 7,8 : First Data

CTLAR(6) =8 " End of string

CALL MBDRV(MB.BRKRCV, STATUS, RCVL, CTLAR(0), FRAR(0),
OUTAR(0))

After the BRKRCV command returns, OUTAR will contain:

Element Contents
(Decimal)
0 22 Destination Address
1 16 Function Code (Write Multle
Registers)
2 135 Startig Address ([uivalent to

Holding Register 40136)

Revision 2.100 March 21, 1993 Page 41

MODBUS Commmunications Driver - Functions

3 2 Number of Values

4 4 Byte Count

5 10 Data Value 1 (for 40136)
6 258 Data Value 2 (for 40137)

When BRKRCYV hits element 6 of the Control array (the End flag), it will interpret all
remaining bytes of the incoming frame according to the last Comtnal. In this casehe last
Control word means "Move Word", sdl of the remaining dathytes, regardless of homany
there are, will be copied as words into the Output array starting at element 6.

Note that this example implies "Slave Mode" operation. In otherds,the mopBUS device
issues the Write Multiple Registers commaadhe IBM PC and awaits a reply. Therefore, it is
very important that you transmit the proper acknowledgement string uSNPUSR.
Otherwise, thetonsus device will "time out", and may either report an error condition or begin
retrying the operation.

Page 42 March 21, 1993 Revision 2.100

MODBUS Commmunications Driver - Functions

SRBCONV --- Convert String to Register and Bit

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)

FNO =15 Function Number Integer
STATUS Error Return Integer
ARG1 Input String String
ARG2 Return Register Unsigned Integer
ARG3 Return Bit Integer
ARG4
DESCRIPTION

Since BASIC provides no capability to convert an octal string to bie® hasprovided two
functions to handle conversion and error checking on octal input strings.

SRBCONVconverts a string in the form "register.bit" to a register numb&RG2 and a bit
number iNARGS3. It alsochecks thatARG2 is lessthan or equal to 37777 (Octal) atiat
ARG3 is less than or equal to 17 (Octal).

If the string contains illegal characters, or if the return values are ill&FATUS will be
nonzero. If the conversion was successful, STATUS will be returned as zero.

This function is included mainly for compatibility with theeliance Electric AutoMate™
system, which makes extensive use of octal addressing.

EXAMPLE

REG =0

BIT=0

INPUT"Enter point number";|$

CALL MBDRV(MB.SRBCONYV, STATUS, I$, REG, BIT, B)
IF STATUS<>0 THEN PRINT"lllegal Point Number":STOP
PRINT"Point decoded as "OCT$(REG)"."OCTS$(BIT)

Revision 2.100 March 21, 1993 Page 43

MODBUS Commmunications Driver - Functions

SRCONYV --- Convert String to Register

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)

FNO =16 Function Number Integer
STATUS Error Return Integer
ARG1 Input String String
ARG2 Return Register Unsigned Integer
ARG3
ARG4
DESCRIPTION

Converts an octal string to a binary register number return@dR@®2. If the string contains
illegal characters, or iARG2 is greater than 37777 (OctalgTATUS will be returned as

nonzero.

This function is included mainly for compatibility with theeliance Electric AutoMate™
system, which makes extensive use of octal addressing.

EXAMPLE

REG=0

INPUT"Enter register number";|$

CALL MBDRV(B.SRCONYV, STATUS, I$, REG, B, B)

IF STATUS<>0 THEN PRINT"lllegal register number.":STOP
PRINT"Register decoded as "OCT$(REG)

Page 44 March 21, 1993 Revision 2.100

MODBUS Commmunications Driver - Functions

WORDAR --- Break Word into Array

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)

FNO =17 Function Number Integer
STATUS Error Return Integer
ARG1 Input Value Integer
ARG2 Output Array Integer Array
ARG3
ARG4

DESCRIPTION

This command splits an integer into its 16 component bits. It stores the bits in the first sixteen
elements of the target array. Bit O (the least significant bit) is assigned to element O of the
array.

EXAMPLE

REG = 40221
REGCT =1
REGVAL =0
DIM BAR(16)
CALL MBDRV(MB.RDOR, STATUS, REG, REGCT, REGVAL, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
CALL MBDRV(MB.WORDAR, STATUS, REGVAL, BAR(0), B, B)
PRINT"Register 40221's value in binary: ";
FOR LA=15TO O STEP -1
IF BAR(LA) THEN PRINT"1"; ELSE PRINT"0";
NEXT LA:PRINT

Revision 2.100 March 21, 1993 Page 4§

MODBUS Commmunications Driver - Functions

ARWORD --- Assemble Array into Word

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)

FNO =18 Function Number Integer
STATUS Error Return Integer
ARG1 Input Array Integer Array
ARG2 Output Value Integer
ARG3
ARG4

DESCRIPTION

This function is the converse ¥WORDAR. It packsthe first sixteen elements of the source
array ARGL1 into the destination integ&kRG2. Element 0 ofARG1 determines the status of
Bit O of the destination integer.

ARWORD checkseach of the first 16 elements of the source array in turn. If the element is
nonzero, that bit of the target integer will be set. If the element is zero, the target bit will be
cleared.

EXAMPLE

Assume array BAR(16) has been initialized to the desired bit pattern...

REG = 40221

REGCT =1

REGVAL =0

CALL MBDRV(MB.ARWORD, STATUS, BAR(0), REGVAL, B, B)
CALL MBDRV(MB.WRSR, STATUS, REG, REGVAL, B, B)

IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Register 40221 set to"REGVAL

Page 46 March 21, 1993 Revision 2.100

MODBUS Commmunications Driver - Functions

STEXT --- Send Text to Port

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO =19 Function Number Integer
STATUS Error Return Integer
ARG1 String to Send String
ARG2

ARG3

ARG4

DESCRIPTION

Sends an arbitrariext string to the serial port at the current baud rate. Strings are always sent
with one stop bit and no parity.

You may wish to use thicommand to send dialing strings to a modeAny reply from the
destination device will be lost. STATUS will return -3 if the string could not be transmitted for
some reason.

EXAMPLE

STR$ ="AT D 1 800 555 1212" + CHR$(13) + CHR$(10)

CALL MBDRV(B.STEXT, STATUS, STR$, B, B, B)

IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Dialing..."

Revision 2.100 March 21, 1993 Page 47

MODBUS Commmunications Driver - Functions

IOMAP --- Control I/O Mapping

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 20 Function Number Integer
STATUS Error Return Integer
ARG1 Flag Integer
ARG2

ARG3

ARG4

DESCRIPTION

Normally, MBDRV "maps" the Register and Coil addresses that pass to conform to the
Protocol's specifications. For example, if you refer to Holding Register 40127, the actual binary
address transmitted by MBDRYV will be 136, as defined by the Protocol.

However, if you are not working with Gould equipment, or if you need to contrahdhel
transmitted addresses, you can disable address mapping with this command.

Address Mapping is enabled by default. To dis#udress Mappinggall IOMAP with ARG1
equal to 0. Any nonzero value enables mapping.

EXAMPLE

FLG=0
CALL MBDRV(MB.IOMAP, STATUS, FLG, B, B, B)
PRINT"Address Mapping Disabled."

Page 48 March 21, 1993 Revision 2.100

MODBUS Commmunications Driver - Functions

OPPAR --- Other Port Parameters

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)

FNO =21 Function Number Integer
STATUS Error Return Integer
ARG1 Parity Integer
ARG2 Stops Integer
ARG3 Data size Integer
ARG4

DESCRIPTION

This function is used to set serial port parameters not covered by the CHNPOR command.

ARG1 can be 0 = No Parity, 1 = Odd Parity, or 2 = Even Parity.
ARG2 can be 1 = 1 Stop Bit, 2 = 2 Stop Bits.

ARG3 can be 7 = 7 Data Bits or 8 = 8 Data Bits.

Since themonpUs protocol operates in pure binary, you should normally udat& bits. The

other parameters will be determined by your target device.

EXAMPLE

PAR =2 " Even Parity

STP=1 "1 Stop Bit

DAT =8 ' 8 Data Bits

CALL MBDRV(MB.OPPAR, STATUS, PAR, STP, DAT, B)
IF STATUS<>0 THEN

PRINT"lllegal Communications Setup "STATUS:STOP

Revision 2.100 March 21, 1993

Page 49

MODBUS Commmunications Driver - Functions

KEYPORT --- Set Hardware Key port

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO =22 Function Number Integer
STATUS Return Code Integer
ARG1 Hardware Key Port Integer
ARG2

ARG3

ARG4

DESCRIPTION

By default, the Driver assumes that the Hardware Key is located on LPT1. However,
you cantell the Driver tolook for the Key on anothgparallel printer port with this
command. ARG1 selects the port where the Key is located and can range from 1 to 3.

When you execute theeyrorT command, the Driver will immediately try to locate the
Key on the new port. If the Key is not found, the Driver will retuSTa@ATUS value of
-2.

EXAMPLE

' Select LPT2 for Hardware Key

PORTN =2

CALL BASDRV(B.KEYPORT, STATUS, PORTN, B, B, B)

IF STATUS=-2 THEN PRINT"Hardware Key Not Detected.":STOP

Page 50 March 21, 1993 Revision 2.100

